ACM学习笔记:可持久化线段树

title : 可持久化线段树
date : 2021-8-18
tags : 数据结构,ACM

 

可持久化线段树

可以用来解决线段树存储历史状态的问题。

我们在进行单点修改后,线段树只有logn个(一条链)的节点被修改,我们可以让修改后的树与修改前的树共享节点,节省时间和空间。

在学习之前,我们先引入三个前置知识:离散化、动态开点,权值线段树。

 

离散化

对于较大的数据范围,只要将关键点记录下来,记录下rank,就能把数据缩小到可以接受的范围,以便建立线段树或其他数据结构来解决问题。

具体步骤

(1)将所有端点加入辅助数组; (2)按坐标从小到大排序; (3)去重; (4)数据离散化,用hs数组记录端点的排名而非具体数字

vector<int>vt;
for(int i=1;i<=n;i++){
   cin>>a[i];
   vt.push(a[i]); //加入辅助容器
}
sort(vt.begin(),vt.end());//排序
vt.erase(unique(vt.begin(),vt.end()),vt.end()); //去重
for(int i=0;i<vt.size();i++){
   hs[vt[i]]=++tot; //存储为rank
}

 

动态开点

动态开点线段树可以避免离散化。

如果权值线段树的值域较大,离散化比较麻烦,可以用动态开点的技巧。

省略了建树的步骤,而是在具体操作中加入结点。

 

权值线段树

线段树的叶子节点保存的是当前值的个数。

每个节点保存区间左右端点以及所在区间节点的个数。

由于值域范围通常较大,一般会配合离散化或动态开点等策略优化空间。

应用

查找一个区间的第k大的值

查询某个数的排名

查询整个数组的排序

查询前驱和后继

单点修改
void update(int node,int start,int end,int pos){
   if(start==end) tr[node]++;
   else{
       int mid=start+end>>1;
       if(pos<=mid) update(node<<1,start,mid,pos);
       else update(node<<1|1,mid+1,end,pos);
  }
}//tr[i]表示值为i的元素个数,pos是要查找的位置
查询区间中的数出现次数
int query(int node,int start,int end,int ql,int qr){
   if(start==ql&&end==qr) return tr[node];
   int mid=start+end>>1;
   if(qr<=mid) return query(node<<1,start,mid,ql,qr);
   else if(ql>mid) return query(node<<1|1,mid+1,end,ql,qr);
   else return query(node<<1,start,mid,ql,qr)+query(node<<1|1,mid+1,end,ql,qr);
}//对单点查询同样适用
查询所有数的第k大值
int kth(int node,int start,int end,int k){
   if(start==end) return start;
   int mid=start+end>>1;
   int s1=tr[node<<1],s2=tree[node<<1|1];
   if(k<=s2) return kth(node<<2|1,mid+1,end,k);
   else return kth(node<<1,start,mid,k-s2);
} //注意是第k大,从右边开始减,如果是第k小就减去左边
查询前驱(后继同)
int findpre(int node,int start,int end){ //找这个区间目前最大的
   if(start==end) return start; //找到直接返回
   int mid=start+end>>1;
   if(t[node<<1|1]) return findpre(node<<1|1,mid+1,end);
   return findpre(node<<1,start,mid);
}

int pre(int node,int l,int r,int pos){ //求pos的前驱
   if(r<pos){ //在最右边
       if(t[node]) return findpre(node,l,r);
       return 0;
  }
   int mid=l+r>>1,res;
   if(mid+1<pos&&t[node<<1|1]&& (res=pre(node<<1|1,mid+1,r,pos))) return res; //在右区间寻找
   return pre(node<<1,l,mid,pos);  //在左区间寻找
}

 

 

可持久化线段树

复杂度分析

建树O(nlogn)

询问为O(logn)

空间复杂度O(nlognlogn)。

 

核心思想

以前缀和形式建立,基于动态开点的存储形式。

两棵线段树之间是可减的(每一个节点对应相减)。

 

存储

hjt[0]充当NULL,从1开始储存根节点

struct Node{
   int lc,rc,sum; //左儿子右儿子和值sum
}hjt[maxn*32] //空间一般开到32即可
int cnt,root[maxn];//内存池计数器和根节点编号
插入

并不改变原来的树,而是新开根节点,并向下开辟

void insert(inr cur,int pre.int pos,int l,int r){
   if(l==r){ //找到这个点,当前版本点值+1
       t[cur].v=t[pre].v+1;
       return;
  }
   int mid=l+r>>1;
   if(pos<=mid){
       t[cur].lc=++e;
       t[cur].rc=t[pre].rc;
       insert(t[cur].lc,t[pre].lc,pos,l,mid);
  }else{
       t[cur].rc=++e;
       t[cur].lc=t[pre].lc;
       insert(t[cur].rc,t[pre].rc,pos,mid+1,r);
  }
   t[cur].v=t[t[cur].lc].v+t[t[cur].rc].v; //pushup
}
询问操作

本质上与权值线段树相同,只需要在区间上作差。

int query(int l,int r,int x,int y,int k){
if (l == r){
return l;
  }
int mid=(l+r)/2;
int sum=tr[tr[y].l].sum-tr[tr[x].l].sum;
if(sum >= k){
return query(l,mid,tr[x].l,tr[y].l,k);
}
else{
       return query(mid+1,r,tr[x].r,tr[y].r,k-sum);
}
}
区间第K小

luoguP3834 【模板】可持久化线段树 2(主席树)

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;
const int maxn = 2e5 + 7;

int n, m, cnt, rt[maxn], a[maxn], x, y, k;
//a[i]是原始的序列,rt[i]是第i版本的主席树

struct node
{
int l, r, sum; //树的左端、右端和元素个数
} tr[maxn * 32];

vector<int> vt; //辅助容器

void read(int &data)  //快读优化
{
int x = 0, f = 1;
char ch = getchar();
while (ch < '0' || ch > '9')
{
if (ch == '-')
{
f = f * -1;
}
ch = getchar();
}
while (ch >= '0' && ch <= '9')
{
x = x * 10 + ch - '0';
ch = getchar();
}
data = x * f;
}

int getid(int x)  //返回每个元素的rank
{
return lower_bound(vt.begin(), vt.end(), x) - vt.begin() + 1;
}

void insert(int l, int r, int &x, int y, int pos)
{ //每次修改或插入,新建一个根节点,并向下递归新建节点
tr[++cnt] = tr[y];
tr[cnt].sum++;  //区域元素数量+1
x = cnt; //将原来的树地址指向当前树
if (l == r)
{ //已经是叶子了,返回
return;
}
int mid = (l + r) / 2;
if (mid >= pos)
{  //向左子树插入
insert(l, mid, tr[x].l, tr[y].l, pos);
}
else
{  //向右子树插入
insert(mid + 1, r, tr[x].r, tr[y].r, pos);  
}
}

int query(int l, int r, int x, int y, int k)
{ //l,r表示当前区间,x,y表示旧树和新树,k要在该区间找k小
if (l == r)
{
return l;    //找到则直接返回第k小的值l
}
int mid = (l + r) / 2;
int sum = tr[tr[y].l].sum - tr[tr[x].l].sum;
//左子树相减,其差值为两个版本之间左边相差多少个数
if (sum >= k)
{  //结果大于等于k,询问左子树
return query(l, mid, tr[x].l, tr[y].l, k);
}
else
{  //否则找右子树第k-sum小的数
return query(mid + 1, r, tr[x].r, tr[y].r, k - sum);
}
}

signed main()
{
read(n);
read(m);
for (int i = 1; i <= n; i++)
{
read(a[i]);
vt.push_back(a[i]); //辅助容器用于离散化
}
sort(vt.begin(), vt.end()); //排序
vt.erase(unique(vt.begin(), vt.end()), vt.end()); //去重
for (int i = 1; i <= n; i++)
{  //每次插入都从根节点开始建立新树(形成一条链)
insert(1, n, rt[i], rt[i - 1], getid(a[i]));
}

for (int i = 1; i <= m; i++)
{//第y棵数和第x-1棵数做差,就能查出[x,y]区间第k小值
read(x);
read(y);
read(k);
printf("%d\n", vt[query(1, n, rt[x - 1], rt[y], k) - 1]);

}
return 0;
}

 

 

参考资料

//www.cnblogs.com/young-children/p/11787490.html

//www.cnblogs.com/young-children/p/11787493.html

//blog.csdn.net/ModestCoder_/article/details/90107874

//blog.csdn.net/a1351937368/article/details/78884465