Flink消费kafka如何获取每条消息对应的topic
- 2020 年 3 月 26 日
- 筆記
1.首先自定义个 KafkaDeserializationSchema
public class CustomKafkaDeserializationSchema implements KafkaDeserializationSchema<Tuple2<String, String>> { @Override //nextElement 是否表示流的最后一条元素,我们要设置为 false ,因为我们需要 msg 源源不断的被消费 public boolean isEndOfStream(Tuple2<String, String> nextElement) { return false; } @Override // 反序列化 kafka 的 record,我们直接返回一个 tuple2<kafkaTopicName,kafkaMsgValue> public Tuple2<String, String> deserialize(ConsumerRecord<byte[], byte[]> record) throws Exception { return new Tuple2<>(record.topic(), new String(record.value(), "UTF-8")); } @Override //告诉 Flink 我输入的数据类型, 方便 Flink 的类型推断 public TypeInformation<Tuple2<String, String>> getProducedType() { return new TupleTypeInfo<>(BasicTypeInfo.STRING_TYPE_INFO, BasicTypeInfo.STRING_TYPE_INFO); } }
2.使用自定义的 KafkaDeserializationSchema 进行消费
public static void main(String[] args) throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); Properties properties = new Properties(); properties.setProperty("bootstrap.servers", "localhost:9092"); properties.setProperty("group.id", "test"); FlinkKafkaConsumer<Tuple2<String, String>> kafkaConsumer = new FlinkKafkaConsumer<>("test", new CustomKafkaDeserializationSchema(), properties); kafkaConsumer.setStartFromEarliest(); env.addSource(kafkaConsumer).flatMap(new FlatMapFunction<Tuple2<String, String>, Object>() { @Override public void flatMap(Tuple2<String, String> value, Collector<Object> out) throws Exception { System.out.println("topic==== " + value.f0); } }); // execute program env.execute("Flink Streaming Java API Skeleton"); }