半小时,将你的Spark SQL模型变为在线服务

SparkSQL在机器学习场景中应用

第四范式已经在很多行业落地了上万个AI应用,比如在金融行业的反欺诈,媒体行业的新闻推荐,能源行业管道检测,而SparkSQL在这些AI应用中快速实现特征变换发挥着重要的作用
image2020-6-25_9-56-2.png
SparkSQL在特征变换主要有一下几类

  1. 多表场景,用于表之间拼接操作,比如交易信息表去拼接账户表
  2. 使用udf进行简单的特征变换,比如对时间戳进行hour函数处理
  3. 使用时间窗口和udaf进行时序类特征处理,比如计算一个人最近1天的消费金额总和

SparkSQL到目前为止,解决很好的解决离线模型训练特征变换问题,但是随着AI应用的发展,大家对模型的期望不再只是得出离线调研效果,而是在真实的业务场景发挥出价值,而真实的业务场景是模型应用场景,它需要高性能,需要实时推理,这时候我们就会遇到以下问题

  1. 多表数据离线到在线怎么映射,即批量训练过程中输入很多表,到在线环境这些表该以什么形式存在,这点也会影响整个系统架构,做得好能够提升效率,做得不好就会大大增加模型产生业务价值的成本
  2. SQL转换成实时执行成本高,因为在线推理需要高性能,而数据科学家可能做出成千上万个特征,每个特征都人肉转换,会大大增加的工程成本
  3. 离线特征和在线特征保持一致困难,手动转换就会导致一致性能,而且往往很难一致
  4. 离线效果很棒但是在线效果无法满足业务需求

在具体的反欺诈场景,模型应用要求tp99 20ms去检测一笔交易是否是欺诈,所以对模型应用性能要求非常高

第四范式特征工程数据库是如何解决这些问题

image2020-6-25_10-29-23.png
通过特征工程数据库让SparkSQL的能力得到了补充

  1. 以数据库的形式,解决了离线表到在线的映射问题,我们对前面给出的答案就是离线表是怎么分布的,在线也就怎么分布
  2. 通过同一套代码去执行离线和在线特征转换,让在线模型效果得到了保证
  3. 数据科学家与业务开发团队的合作以sql为传递介质,而不再是手工去转换代码,大大提升模型迭代效率
  4. 通过llvm加速的sql,相比scala实现的spark2.x和3.x在时序复杂特征场景能够加速2~3倍,在线通过in-memory的存储,能够保证sql能够在非常低延迟返回结果

快速将spark sql 模型变成实时服务demo

demo的模型训练场景为预测一次打车行程到结束所需要的时间,这里我们将使用fedb ,pyspark,lightgbm等工具最终搭建一个http 模型推理服务,这也会是spark在机器学习场景的实践

image2020-6-25_10-36-41.png
整个demo200多行代码,制作时间不超过半个小时

  1. train_sql.py 特征计算与训练, 80行代码
  2. predict_server.py 模型推理http服务, 129行代码

场景数据和特征介绍

整个训练数据如下样子
样例数据

`id,vendor_id,pickup_datetime,dropoff_datetime,passenger_count,pickup_longitude,pickup_latitude,dropoff_longitude,dropoff_latitude,store_and_fwd_flag,trip_duration`

`id3097625,1,2016-01-22 16:01:00,2016-01-22 16:15:16,2,-73.97746276855469,40.7613525390625,-73.95573425292969,40.772396087646484,N,856`

`id3196697,1,2016-01-28 07:20:18,2016-01-28 07:40:16,1,-73.98524475097656,40.75959777832031,-73.99615478515625,40.72945785522461,N,1198`

`id0224515,2,2016-01-31 00:48:27,2016-01-31 00:53:30,1,-73.98342895507812,40.7500114440918,-73.97383880615234,40.74980163574219,N,303`

`id3370903,1,2016-01-14 11:46:43,2016-01-14 12:25:33,2,-74.00027465820312,40.74786376953125,-73.86485290527344,40.77039337158203,N,2330`

`id2763851,2,2016-02-20 13:21:00,2016-02-20 13:45:56,1,-73.95218658447266,40.772220611572266,-73.9920425415039,40.74932098388672,N,1496`

`id0904926,1,2016-02-20 19:17:44,2016-02-20 19:33:19,4,-73.97344207763672,40.75189971923828,-73.98480224609375,40.76243209838867,N,935`

`id2026293,1,2016-02-25 01:16:23,2016-02-25 01:31:27,1,-73.9871597290039,40.68777847290039,-73.9115219116211,40.68180847167969,N,904`

`id1349988,1,2016-01-28 20:16:05,2016-01-28 20:21:36,1,-74.0028076171875,40.7338752746582,-73.9968032836914,40.743770599365234,N,331`

`id3218692,2,2016-02-17 16:43:27,2016-02-17 16:54:41,5,-73.98147583007812,40.77408218383789,-73.97216796875,40.76400375366211,N,674`

场景特征变换sql脚本
特征变换

`select` `trip_duration, passenger_count,`

`sum``(pickup_latitude) over w<span> </span``as` `vendor_sum_pl,`

`max``(pickup_latitude) over w<span> </span``as` `vendor_max_pl,`

`min``(pickup_latitude) over w<span> </span``as` `vendor_min_pl,`

`avg``(pickup_latitude) over w<span> </span``as` `vendor_avg_pl,`

`sum``(pickup_latitude) over w2<span> </span``as` `pc_sum_pl,`

`max``(pickup_latitude) over w2<span> </span``as` `pc_max_pl,`

`min``(pickup_latitude) over w2<span> </span``as` `pc_min_pl,`

`avg``(pickup_latitude) over w2<span> </span``as` `pc_avg_pl ,`

`count``(vendor_id) over w2<span> </span``as` `pc_cnt,`

`count``(vendor_id) over w<span> </span``as` `vendor_cnt`

`from` `{}`

`window w<span> </span``as` `(partition<span> </span``by` `vendor_id<span> </span``order` `by` `pickup_datetime ROWS_RANGE<span> </span``BETWEEN` `1d PRECEDING<span> </span``AND` `CURRENT` `ROW),`

`w2<span> </span``as` `(partition<span> </span``by` `passenger_count<span> </span``order` `by` `pickup_datetime ROWS_RANGE<span> </span``BETWEEN` `1d PRECEDING<span> </span``AND` `CURRENT` `ROW)`

我们选择了vendor_id 和 passenger_count 两个纬度做时序特征

`train_df<span> </span``=` `spark.sql(train_sql)`

`# specify your configurations as a dict`

`params<span> </span``=` `{`

`    ``'boosting_type'``:<span> </span``'gbdt'``,`

`    ``'objective'``:<span> </span``'regression'``,`

`    ``'metric'``: {``'l2'``,<span> </span``'l1'``},`

`    ``'num_leaves'``:<span> </span``31``,`

`    ``'learning_rate'``:<span> </span``0.05``,`

`    ``'feature_fraction'``:<span> </span``0.9``,`

`    ``'bagging_fraction'``:<span> </span``0.8``,`

`    ``'bagging_freq'``:<span> </span``5``,`

`    ``'verbose'``:<span> </span``0`

`}`

`print``(``'Starting training...'``)`

`gbm<span> </span``=` `lgb.train(params,`

`                ``lgb_train,`

`                ``num_boost_roun``=``20``,`

`                ``valid_sets``=``lgb_eval,`

`                ``early_stopping_rounds``=``5``)`

`gbm.save_model(``'model.txt'``)`

执行模型训练过程,最终产生model.txt

模型推理过程

导入数据代码
import

`def` `insert_row(line):`

`    ``row<span> </span``=` `line.split(``','``)`

`    ``row[``2``]<span> </span``=` `'%dl'``%``int``(datetime.datetime.strptime(row[``2``],<span> </span``'%Y-%m-%d %H:%M:%S'``).timestamp()<span> </span``*` `1000``)`

`    ``row[``3``]<span> </span``=` `'%dl'``%``int``(datetime.datetime.strptime(row[``3``],<span> </span``'%Y-%m-%d %H:%M:%S'``).timestamp()<span> </span``*` `1000``)`

`    ``insert<span> </span``=` `"insert into t1 values('%s', %s, %s, %s, %s, %s, %s, %s, %s, '%s', %s);"``%` `tupl``(row)`

`    ``driver.executeInsert(``'db_test'``, insert)`

`with<span> </span``open``(``'data/taxi_tour_table_train_simple.csv'``,<span> </span``'r'``) as fd:`

`    ``idx<span> </span``=` `0`

`    ``for` `line<span> </span``in` `fd:`

`        ``if` `idx<span> </span``=``=` `0``:`

`            ``idx<span> </span``=` `idx<span> </span``+` `1`

`            ``continu`

`        ``insert_row(line.replace(``'\n'``, ''))`

`        ``idx<span> </span``=` `idx<span> </span``+` `1`

注:train.csv为训练数据csv格式版本

模型推理逻辑
predict.py

`def` `post(``self``):`

`        ``row<span> </span``=` `json.loads(``self``.request.body)`

`        ``ok, req<span> </span``=` `fedb_driver.getRequestBuilder(``'db_test'``, sql)`

`        ``if` `not` `ok<span> </span``or` `not` `req:`

`            ``self``.write(``"fail to get req"``)`

`            ``return`

`        ``input_schema<span> </span``=` `req.GetSchema()`

`        ``if` `not` `input_schema:`

`            ``self``.write(``"no schema found"``)`

`            ``return`

`        ``str_length<span> </span``=` `0`

`        ``for` `i<span> </span``in` `rang``(input_schema.GetColumnCnt()):`

`            ``if` `sql_router_sdk.DataTypeName(input_schema.GetColumnType(i))<span> </span``=``=` `'string'``:`

`                ``str_length<span> </span``=` `str_length<span> </span``+` `len``(row.get(input_schema.GetColumnName(i), ''))`

`        ``req.Init(str_length)`

`        ``for` `i<span> </span``in` `rang``(input_schema.GetColumnCnt()):`

`            ``tname<span> </span``=`  `sql_router_sdk.DataTypeName(input_schema.GetColumnType(i))`

`            ``if` `tname<span> </span``=``=` `'string'``:`

`                ``req.AppendString(row.get(input_schema.GetColumnName(i), ''))`

`            ``elif` `tname<span> </span``=``=` `'int32'``:`

`                ``req.AppendInt32(``int``(row.get(input_schema.GetColumnName(i),<span> </span``0``)))`

`            ``elif` `tname<span> </span``=``=` `'double'``:`

`                ``req.AppendDouble(``float``(row.get(input_schema.GetColumnName(i),<span> </span``0``)))`

`            ``elif` `tname<span> </span``=``=` `'timestamp'``:`

`                ``req.AppendTimestamp(``int``(row.get(input_schema.GetColumnName(i),<span> </span``0``)))`

`            ``els``:`

`                ``req.AppendNULL()`

`        ``if` `not` `req.Build():`

`            ``self``.write(``"fail to build request"``)`

`            ``return`

 

`        ``ok, rs<span> </span``=` `fedb_driver.executeQuery(``'db_test'``, sql, req)`

`        ``if` `not` `ok:`

`            ``self``.write(``"fail to execute sql"``)`

`            ``return`

`        ``rs.``Next``()`

`        ``ins<span> </span``=` `build_feature(rs)`

`        ``self``.write(``"----------------ins---------------\n"``)`

`        ``self``.write(``str``(ins)<span> </span``+` `"\n"``)`

`        ``duration<span> </span``=` `bst.predict(ins)`

`        ``self``.write(``"---------------predict trip_duration -------------\n"``)`

`        ``self``.write(``"%s s"``%``str``(duration[``0``]))`

最终执行效果

`# 发送推理请求 ,会看到如下输出`

`python3 predict.py`

`----------------ins---------------`

`[[ 2.       40.774097 40.774097 40.774097 40.774097 40.774097 40.774097`

`  ``40.774097 40.774097  1.        1.      ]]`

`---------------predict trip_duration -------------`

`859.3298781277192 s`

运行demo请到//github.com/4paradigm/SparkSQLWithFeDB
qrcode_for_gh_d85202affe29_258.jpg
关注公众号,获得视频教程

Tags: