老生常谈的函数防抖与节流

  • 2019 年 10 月 7 日
  • 笔记

https://github.com/ZengLingYong/Blog/issues/21

本篇课题,或许早已是烂大街的解读文章。不过一系列面试下来,不少伙伴们还是似懂非懂地栽倒在(~面试官~)深意的笑容之下,权当温故知新。

JavaScript的执行过程,是基于栈来进行的。复杂的程序代码被封装到函数中,程序执行时,函数不断被推入执行栈中。所以 "执行栈" 也称 "函数执行栈"。

函数中封装的代码块,一般都有相对复杂的逻辑处理(计算/判断),例如函数中可能会涉及到 DOM 的渲染更新,复杂的计算与验证, Ajax 数据请求等等。

前端页面的操作权,大部分都是属于浏览端的客户爸爸们(单身三十年的手速,惹不起惹不起!!!)。如果函数被频繁调用,造成的性能开销绝对不只一点点。

  • 前: DOM 频繁重绘的卡顿让客户爸爸们想把你揪出来一顿大招。。。
  • 后:后端同学正在提刀赶来的路上:“为什么我的接口被你玩挂了”。。。

既要提升用户体验,又要减少后端服务开销,可见我们大前端的使命不只一页PPT。说好前因,接着就是后果了。既然有优化的需求,必然就要有相应的解决方案。隆重请出主角: “防抖” 与 “节流”。

防抖(debounce)

在事件被触发 n 秒后再执行回调函数,如果在这 n 秒内又被触发,则重新计时延迟时间。

生活化理解:英雄的技能条,技能条读完才能使用技能(R大招60s)

防抖的实现方式分两种 “立即执行” 和 “非立即执行”,区别在于第一次触发时,是否立即执行回调函数。

非立即执行

”非立即执行防抖“ 指事件触发后,回调函数不会立即执行,会在延迟时间 n 秒后执行,如果 n 秒内被调用多次,则重新计时延迟时间

// e.g. 防抖 - 非立即执行  function debounce(func, delay) {    var timeout;    return function() {      var context = this;      var args = arguments;      // && 短路运算 == if(timeout) else {...}      timeout && clearTimeout(timeout);      timeout = setTimeout(function(){        func.apply(context, args);      }, delay);    }  }    // 调用  var printUserName = debounce(function(){    console.log(this.value);  }, 800);  document.getElementById('username')    .addEventListener('keyup', printUserName);

立即执行

“立即执行防抖” 指事件触发后,回调函数会立即执行,之后要想触发执行回调函数,需等待 n 秒延迟

// e.g. 防抖 - 立即执行  function debounce(func, delay) {      var timeout;      return function() {          var context = this;          var args = arguments;          callNow = !timeout;          timeout = setTimeout(function() {              timeout = null;          }, delay);          callNow && func.apply(context, args);      }  }

函数防抖原理:通过维护一个定时器,其延迟计时以最后一次触发为计时起点,到达延迟时间后才会触发函数执行。

节流(throttle)

规定在一个单位时间内,只能触发一次函数。如果这个单位时间内触发多次函数,只有一次生效(间隔执行)

生活化理解:

  1. FPS射击游戏子弹射速(即使按住鼠标左键,射出子弹的速度也是限定的)
  2. 水龙头的滴水(水滴攒到一定重量才会下落)

函数节流实现的方式有 “时间戳” 和 “定时器” 两种。

时间戳

// e.g. 节流 - 时间戳  function throttle(func, delay) {    var lastTime = 0;    return function() {      var context = this;      var args = arguments;      var nowTime = +new Date();      if (nowTime > lastTime + delay) {        func.apply(context, args)        lastTime = nowTime;      }    }  }

“时间戳” 的方式,函数在时间段开始时执行。

缺点:假定函数间隔1s执行,如果最后一次停止触发,卡在4.2s,则不会再执行。

定时器

// e.g. 节流 - 定时器  function throttle(func, delay) {    var timeout;    return function() {      var context = this;      var args = arguments;      if (!timeout) {        setTimeout(function(){          func.apply(context, args);          timeout = null;        }, delay)      }    }  }

“定时器” 的方式,函数在时间段结束时执行。可理解为函数并不会立即执行,而是等待延迟计时完成才执行。(由于定时器延时,最后一次触发后,可能会再执行一次回调函数)

时间戳 + 定时器(互补优化)

// e.g. 节流 - 时间戳 + 定时器  function throttle(func, delay) {    let lastTime, timeout;    return function() {      let context = this;      let args = arguments;      let nowTime = +new Date();      if (lastTime && nowTime < lastTime + delay) {        timeout && clearTimeout(timeout);        timeout = setTimeout(function(){          lastTime = nowTime;          func.apply(context, args);        }, delay);      } else {        lastTime = nowTime;        func.apply(context, args);      }    }  }

合并优化的原理:“时间戳”方式让函数在时间段开始时执行(第一次触发立即执行),“定时器”方式让函数在最后一次事件触发后(如4.2s)也能触发。

函数节流原理:一定时间内只触发一次,间隔执行。通过判断是否到达指定触发时间,间隔时间固定。

“防抖” 与 “节流” 的异同

相同:都是防止某一时间段内,函数被频繁调用执行,通过时间频率控制,减少回调函数执行次数,来实现相关性能优化。

区别:“防抖”是某一时间内只执行一次,最后一次触发后过段时间执行,而“节流”则是间隔时间执行,间隔时间固定。

“防抖” 与 “节流” 的应用场景

防抖

  1. 文本输入搜索联想
  2. 文本输入验证(包括 Ajax 后端验证)

节流

  1. 鼠标点击
  2. 监听滚动 scroll
  3. 窗口 resize
  4. mousemove 拖拽

应用场景还有很多,具体场景需具体分析。只要涉及高频的函数调用,都可参考函数防抖节流的优化方案。

鼓起勇气写在结尾:以上代码都不是 “完美” 的 “防抖 / 节流” 实现代码!!!仅就实现方式和基本原理,浅谈分解一二。

实际代码开发中,一般会引入lodash 相对 “靠谱” 的第三方库,帮我们去实现防抖节流的工具函数。有兴趣的伙伴们可阅读 lodash 相关源码,加深印象理解可再读以下参考文章。