用栈来实现简易版中缀表达式的计算器
- 2020 年 2 月 20 日
- 笔记
1.什么是栈 先进后出,元素的删除和插入只能在同一端的一种线性表
2.栈的实现方式 数组和链表都可以,本次使用数组
3.什么是中缀表达式 3+2-1*6+10
4.代码:
/** * @author shengjk1 * @date 2020/2/13 */ public class Calcaulator { public static void main(String[] args) { // 中缀表达式 String expression = "5-1*6+2"; //创建两个栈 数栈、符号栈 ArrayStack1 numStack = new ArrayStack1(10); ArrayStack1 operStack = new ArrayStack1(10); //用于遍历 int index = 0; int num1, num2 = 0; int oper = 0; int res = 0; //每次扫描得到的char char ch = ' '; //用来拼接多位数 String keepNum = ""; while (true) { ch = expression.substring(index, index + 1).charAt(0); //判断 ch 是什么,然后做相应的处理 if (operStack.isOper(ch)) { //判断当前的符号栈是否为空 if (!operStack.isEmpty()) { //如果当前的操作符的优先级小于等于栈中符号的优先级,就需要从数栈中 pop 两个数 //在从符号栈中 pop 出一个符号,进行运算,将得到结果,入数栈,然后将当前的操作符入符号栈 if (operStack.priority(ch) <= operStack.priority(operStack.peek())) { num1 = numStack.pop(); num2 = numStack.pop(); oper = operStack.pop(); res = numStack.cal(num1, num2, oper); //运算的结果入数栈 numStack.push(res); //然后将当前的操作符入符号栈 operStack.push(ch); } else { //如果当前的操作符大于栈中的操作符,就直接入符号栈 operStack.push(ch); } } else { //如果为空,直接入符号栈 operStack.push(ch); } } else { // 如果是数字则直接入数栈 // numStack.push(ch - 48); //看 index 后一位,如果是数则继续进行扫描,如果不是则入栈 keepNum += ch; if (index == expression.length() - 1) { numStack.push(Integer.parseInt(keepNum)); } else { if (operStack.isOper(expression.substring(index + 1, index + 2).charAt(0))) { numStack.push(Integer.parseInt(keepNum)); keepNum = ""; } } } //让 index +1,并判断是否扫描到 exoression 最后 index++; if (index >= expression.length()) { break; } } //当表达式扫描完毕,就顺序的从数栈和符号栈中pop出相应的数和符号,并运行 while (true) { if (operStack.isEmpty()) { break; } num1 = numStack.pop(); num2 = numStack.pop(); oper = operStack.pop(); res = numStack.cal(num1, num2, oper); //运算的结果入数栈 numStack.push(res); } System.out.printf("表达式 %s = %d ", expression, numStack.pop()); } } class ArrayStack1 { private int maxSize; private int[] stack; private int top = -1; public ArrayStack1(int maxSize) { this.maxSize = maxSize; stack = new int[maxSize]; } // 栈满 public boolean isFull() { return top == maxSize - 1; } //栈空 public boolean isEmpty() { return top == -1; } //查看当前栈顶的值 public int peek() { return stack[top]; } //入栈 public void push(int element) { if (isFull()) { System.out.println("栈满"); return; } top++; stack[top] = element; } //出栈 public int pop() { if (isEmpty()) { throw new RuntimeException("stack is empty!"); } int temp = stack[top]; // stack[top]=null; 防止内存泄露 top--; return temp; } // public void list() { if (isEmpty()) { System.out.println("stack is empty"); return; } for (int i = top; i >= 0; i--) { System.out.printf("stack[%d]=%dn", i, stack[i]); } } //返回运算符的优先级 假设优先级越高返回的数字越大 public int priority(int oper) { if (oper == '*' || oper == '/') { return 1; } else if (oper == '+' || oper == '-') { return 0; } else { //假设目前表达式只有 + - * / return -1; } } /** * @param val * @return */ public boolean isOper(char val) { return val == '+' || val == '-' || val == '*' || val == '/'; } /** * 计算 * * @param num1 * @param num2 * @param oper * @return */ public int cal(int num1, int num2, int oper) { int res = 0; switch (oper) { case '+': res = num1 + num2; break; case '-': //注意顺序 res = num2 - num1; break; case '*': res = num1 * num2; break; case '/': res = num2 / num1; break; default: break; } return res; } }
5.栈的使用场景: 1.递归 2.方法调用 3.表达式的转化和求值 4.二叉树遍历 5.图的深度优先遍历 6.逆序输出 如 单链表的反转