word2vec之tensorflow(skip-gram)实现

  • 2019 年 10 月 3 日
  • 笔记

关于word2vec的理解,推荐文章https://www.cnblogs.com/guoyaohua/p/9240336.html

代码参考https://github.com/eecrazy/word2vec_chinese_annotation

我在其基础上修改了错误的部分,并添加了一些注释。

代码在jupyter notebook下运行。

from __future__ import print_function #表示不管哪个python版本,使用最新的print语法  import collections  import math  import numpy as np  import random  import tensorflow as tf  import zipfile  from matplotlib import pylab
from sklearn.manifold import TSNE %matplotlib inline

下载text8.zip文件,这个文件包含了大量单词。官方地址为http://mattmahoney.net/dc/text8.zip

filename='text8.zip'  def read_data(filename):    """Extract the first file enclosed in a zip file as a list of words"""    with zipfile.ZipFile(filename) as f:  #     里面只有一个文件text8,包含了多个单词  #     f.read返回字节,tf.compat.as_str将字节转为字符  #     data包含了所有单词      data = tf.compat.as_str(f.read(f.namelist()[0])).split()    return data    #words里面包含了所有的单词  words = read_data(filename)  print('Data size %d' % len(words))

创建正-反词典,并将单词转换为词典索引,这里词汇表取为50000,仍然有400000多的单词标记为unknown。

#词汇表大小  vocabulary_size = 50000    def build_dataset(words):  #     表示未知,即不在词汇表里的单词,注意这里用的是列表形式而非元组形式,因为后面未知的数量需要赋值    count = [['UNK', -1]]    count.extend(collections.Counter(words).most_common(vocabulary_size - 1))      #词-索引哈希    dictionary = dict()    for word, _ in count:  #     每增加一个-->len+1,索引从0开始      dictionary[word] = len(dictionary)      #用索引表示的整个text8文本    data = list()    unk_count = 0    for word in words:      if word in dictionary:        index = dictionary[word]      else:        index = 0  # dictionary['UNK']        unk_count = unk_count + 1      data.append(index)      count[0][1] = unk_count    # 索引-词哈希      reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys()))    return data, count, dictionary, reverse_dictionary    data, count, dictionary, reverse_dictionary = build_dataset(words)  print('Most common words (+UNK)', count[:5])  print('Sample data', data[:10])  # 删除,减少内存  del words  # Hint to reduce memory.

生成batch的函数

data_index = 0    # num_skips表示在两侧窗口内总共取多少个词,数量可以小于2*skip_window  # span窗口为[ skip_window target skip_window ]  # num_skips=2*skip_window  def generate_batch(batch_size, num_skips, skip_window):    global data_index      #这里两个断言    assert batch_size % num_skips == 0    assert num_skips <= 2 * skip_window      #初始化batch和labels,都是整形    batch = np.ndarray(shape=(batch_size), dtype=np.int32)    labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32) #注意labels的形状      span = 2 * skip_window + 1 # [ skip_window target skip_window ]    #buffer这个队列太有用了,不断地保存span个单词在里面,然后不断往后滑动,而且buffer[skip_window]就是中心词    buffer = collections.deque(maxlen=span)      for _ in range(span):      buffer.append(data[data_index])      data_index = (data_index + 1) % len(data)      #需要多少个中心词,因为一个target对应num_skips个的单词,即一个目标单词w在num_skips=2时形成2个样本(w,left_w),(w,right_w)  #     这样描述了目标单词w的上下文    center_words_count=batch_size // num_skips    for i in range(center_words_count):      #skip_window在buffer里正好是中心词所在位置      target = skip_window  # target label at the center of the buffer      targets_to_avoid = [ skip_window ]      for j in range(num_skips):    #     选取span窗口中不包含target的,且不包含已选过的        target=random.choice([i for i in range(0,span) if i not in targets_to_avoid])        targets_to_avoid.append(target)  #         batch中重复num_skips次        batch[i * num_skips + j] = buffer[skip_window]  #         同一个target对应num_skips个上下文单词        labels[i * num_skips + j, 0] = buffer[target]  #     buffer滑动一格      buffer.append(data[data_index])      data_index = (data_index + 1) % len(data)    return batch, labels    # 打印前8个单词  print('data:', [reverse_dictionary[di] for di in data[:10]])  for num_skips, skip_window in [(2, 1), (4, 2)]:      data_index = 0      batch, labels = generate_batch(batch_size=16, num_skips=num_skips, skip_window=skip_window)      print('nwith num_skips = %d and skip_window = %d:' % (num_skips, skip_window))      print('    batch:', [reverse_dictionary[bi] for bi in batch])      print('    labels:', [reverse_dictionary[li] for li in labels.reshape(16)])

我这里打印的结果为:可以看到batch和label的关系为,一个target单词多次对应于其上下文的单词

data: ['anarchism', 'originated', 'as', 'a', 'term', 'of', 'abuse', 'first', 'used', 'against']    with num_skips = 2 and skip_window = 1:      batch: ['originated', 'originated', 'as', 'as', 'a', 'a', 'term', 'term', 'of', 'of', 'abuse', 'abuse', 'first', 'first', 'used', 'used']      labels: ['as', 'anarchism', 'originated', 'a', 'term', 'as', 'of', 'a', 'term', 'abuse', 'of', 'first', 'abuse', 'used', 'against', 'first']    with num_skips = 4 and skip_window = 2:      batch: ['as', 'as', 'as', 'as', 'a', 'a', 'a', 'a', 'term', 'term', 'term', 'term', 'of', 'of', 'of', 'of']      labels: ['anarchism', 'originated', 'a', 'term', 'originated', 'of', 'as', 'term', 'of', 'a', 'abuse', 'as', 'a', 'term', 'first', 'abuse']

构建model,定义loss:

batch_size = 128  embedding_size = 128 # Dimension of the embedding vector.  skip_window = 1 # How many words to consider left and right.  num_skips = 2 # How many times to reuse an input to generate a label.    valid_size = 16 # Random set of words to evaluate similarity on.  valid_window = 100 # Only pick dev samples in the head of the distribution.  #随机挑选一组单词作为验证集,valid_examples也就是下面的valid_dataset,是一个一维的ndarray  valid_examples = np.array(random.sample(range(valid_window), valid_size))    #trick:负采样数值  num_sampled = 64 # Number of negative examples to sample.    graph = tf.Graph()    with graph.as_default(), tf.device('/cpu:0'):      # 训练集和标签,以及验证集(注意验证集是一个常量集合)    train_dataset = tf.placeholder(tf.int32, shape=[batch_size])    train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])    valid_dataset = tf.constant(valid_examples, dtype=tf.int32)      # 定义Embedding层,初始化。    embeddings = tf.Variable(tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))    softmax_weights = tf.Variable(      tf.truncated_normal([vocabulary_size, embedding_size],stddev=1.0 / math.sqrt(embedding_size)))    softmax_biases = tf.Variable(tf.zeros([vocabulary_size]))      # Model.    # train_dataset通过embeddings变为稠密向量,train_dataset是一个一维的ndarray    embed = tf.nn.embedding_lookup(embeddings, train_dataset)      # Compute the softmax loss, using a sample of the negative labels each time.    # 计算损失,tf.reduce_mean和tf.nn.sampled_softmax_loss    loss = tf.reduce_mean(tf.nn.sampled_softmax_loss(weights=softmax_weights, biases=softmax_biases, inputs=embed,                                 labels=train_labels, num_sampled=num_sampled, num_classes=vocabulary_size))      # Optimizer.优化器,这里也会优化embeddings    # Note: The optimizer will optimize the softmax_weights AND the embeddings.    # This is because the embeddings are defined as a variable quantity and the    # optimizer's `minimize` method will by default modify all variable quantities     # that contribute to the tensor it is passed.    # See docs on `tf.train.Optimizer.minimize()` for more details.    optimizer = tf.train.AdagradOptimizer(1.0).minimize(loss)      # 模型其实到这里就结束了,下面是在验证集上做效果验证    # Compute the similarity between minibatch examples and all embeddings.    # We use the cosine distance:先对embeddings做正则化    norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))    normalized_embeddings = embeddings / norm    valid_embeddings = tf.nn.embedding_lookup(normalized_embeddings, valid_dataset)    #验证集单词与其他所有单词的相似度计算    similarity = tf.matmul(valid_embeddings, tf.transpose(normalized_embeddings))

开始训练:

num_steps = 40001  with tf.Session(graph=graph) as session:    tf.initialize_all_variables().run()    print('Initialized')    average_loss = 0    for step in range(num_steps):      batch_data, batch_labels = generate_batch(batch_size, num_skips, skip_window)      feed_dict = {train_dataset : batch_data, train_labels : batch_labels}      _, this_loss = session.run([optimizer, loss], feed_dict=feed_dict)        average_loss += this_loss  #     每2000步计算一次平均loss      if step % 2000 == 0:        if step > 0:          average_loss = average_loss / 2000        # The average loss is an estimate of the loss over the last 2000 batches.        print('Average loss at step %d: %f' % (step, average_loss))        average_loss = 0        # note that this is expensive (~20% slowdown if computed every 500 steps)      if step % 10000 == 0:        sim = similarity.eval()        for i in range(valid_size):          valid_word = reverse_dictionary[valid_examples[i]]          top_k = 8 # number of nearest neighbors  #         nearest = (-sim[i, :]).argsort()[1:top_k+1]          nearest = (-sim[i, :]).argsort()[0:top_k+1]#包含自己试试          log = 'Nearest to %s:' % valid_word          for k in range(top_k):            close_word = reverse_dictionary[nearest[k]]            log = '%s %s,' % (log, close_word)          print(log)    #一直到训练结束,再对所有embeddings做一次正则化,得到最后的embedding    final_embeddings = normalized_embeddings.eval()

我们可以看下训练过程中的验证情况,比如many这个单词的相似词计算:

 开始时,

Nearest to many: many, originator, jeddah, maxwell, laurent, distress, interpret, bucharest,

10000步后,

Nearest to many: many, some, several, jeddah, originator, neurath, distress, songs,

40000步后,

Nearest to many: many, some, several, these, various, such, other, most,

可以看到此时单词的相似度确实很高了。

最后,我们通过降维,将单词相似情况以图示展现出来:

num_points = 400  # 降维度PCA  tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)  two_d_embeddings = tsne.fit_transform(final_embeddings[1:num_points+1, :])  def plot(embeddings, labels):    assert embeddings.shape[0] >= len(labels), 'More labels than embeddings'    pylab.figure(figsize=(15,15))  # in inches    for i, label in enumerate(labels):      x, y = embeddings[i,:]      pylab.scatter(x, y)      pylab.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points',                     ha='right', va='bottom')    pylab.show()    words = [reverse_dictionary[i] for i in range(1, num_points+1)]  plot(two_d_embeddings, words)

结果如下,随便举些例子,university和college相近,take和took相近,one、two、three等相近


 

总结:原始的word2vec是用c语言写的,这里用的python,结合的tensorflow。这个代码存在一些问题,首先,单词不是以索引作为输入的,应该是以one-hot形式输入。其次,负采样的比例太小,词汇表有50000,每批样本才选64个去做softmax。然后,这里也没使用到另一个trick(当然这里根本没用one-hot,这个trick也不存在了,我甚至觉得根本不需要负采样):将单词构建为二叉树(类似于从one-hot维度降低到二叉树编码(如哈夫曼树)),从而实现一种降维操作。不过,即使是这个简陋的模型,效果看起来依然不错,即方向对了,醉汉也能走到家。