poll(2) 源码分析

  • 2019 年 10 月 12 日
  • 笔记

poll(2)

poll(2) 系统调用的功能和 select(2) 类似:等待一个文件集合中的文件描述符就绪进行I/O操作。

select(2) 的局限性:

  • 关注的文件描述符集合大小最大只有 1024
  • 文件描述符集合为顺序的,不能任意指定 fd,浪费占用的fd

poll(2) 对 select(2) 的改进,关注的文件描述符集合为动态大小,文件描述可以任意指定。

struct pollfd {         int   fd;         /* file descriptor */         short events;     /* requested events */         short revents;    /* returned events */  };    - fd 为关注的文件描述符  - events 为关注的事件(输入),使用位掩码来表示事件  - revents 为就绪的事件(输出),同样使用位掩码表示    #include <poll.h>    int poll(struct pollfd *fds, nfds_t nfds, int timeout);    - fds 为文件描述符集合的地址  - nfds 为文件描述符集合的长度  - timeout 为超时的时间,单位为 毫秒    返回值为 revents 不为 0 的个数,出错返回 -1

一个简单的例子:等待标准输入就绪,超时时间为3s。

#include <poll.h>  #include <unistd.h>  #include <stdio.h>    int main()  {          int timeout = 3000;            struct pollfd fds = {0};          fds.events |= POLLIN;  // fd = 0 等待标准输入            int ret = poll(&fds, 1, timeout);          if (ret == -1)                  printf("error polln");          else if (ret)                  printf("data is avaliable now.n");          else                  printf("no data within 3000 ms.n");    }

实现

代码位于在 fs/select.c 中,参考中的链接有一些关于文件回调和poll结构的说明

poll()

SYSCALL_DEFINE3(poll, struct pollfd __user *, ufds, unsigned int, nfds,                  int, timeout_msecs)  {          struct timespec64 end_time, *to = NULL;          int ret;            if (timeout_msecs >= 0) {                  to = &end_time;                  poll_select_set_timeout(to, timeout_msecs / MSEC_PER_SEC,                          NSEC_PER_MSEC * (timeout_msecs % MSEC_PER_SEC));          }            ret = do_sys_poll(ufds, nfds, to);            if (ret == -EINTR) {                  struct restart_block *restart_block;                    restart_block = &current->restart_block;                  restart_block->fn = do_restart_poll;                  restart_block->poll.ufds = ufds;                  restart_block->poll.nfds = nfds;                    if (timeout_msecs >= 0) {                          restart_block->poll.tv_sec = end_time.tv_sec;                          restart_block->poll.tv_nsec = end_time.tv_nsec;                          restart_block->poll.has_timeout = 1;                  } else                          restart_block->poll.has_timeout = 0;                    ret = -ERESTART_RESTARTBLOCK;          }          return ret;  }

poll() 代码很简单:

  1. 处理超时时间
  2. 实现 poll(2)
  3. 处理后事:判断是否超时或者重新调用。

do_sys_poll()

  static int do_sys_poll(struct pollfd __user *ufds, unsigned int nfds,                  struct timespec64 *end_time)  {          struct poll_wqueues table;           int err = -EFAULT, fdcount, len, size;          /* Allocate small arguments on the stack to save memory and be             faster - use long to make sure the buffer is aligned properly             on 64 bit archs to avoid unaligned access */          long stack_pps[POLL_STACK_ALLOC/sizeof(long)];  // 256 字节大小          struct poll_list *const head = (struct poll_list *)stack_pps;           struct poll_list *walk = head;           unsigned long todo = nfds;            if (nfds > rlimit(RLIMIT_NOFILE))  // 最大打开的文件数量限制                  return -EINVAL;            // N_STACK_PPS = (256 - 16) / 8 = 30, 栈空间可以保存 30 个pollfd结构          // 将用户空间的 struct pollfd 部分移动至栈空间内的数组中          len = min_t(unsigned int, nfds, N_STACK_PPS);          for (;;) {                  walk->next = NULL;                  walk->len = len;                  if (!len)                          break;                    if (copy_from_user(walk->entries, ufds + nfds-todo,                                          sizeof(struct pollfd) * walk->len))                          goto out_fds;                    todo -= walk->len;                  if (!todo)                          break;                    // POLLFD_PER_PAGE = (4096 - 16) / 8 = 510                  // 申请页,每页可容纳 510 个 pollfd 结构                  len = min(todo, POLLFD_PER_PAGE);                  size = sizeof(struct poll_list) + sizeof(struct pollfd) * len;                  walk = walk->next = kmalloc(size, GFP_KERNEL);                  if (!walk) {                          err = -ENOMEM;                          goto out_fds;                  }          }          // 将所有的pollfd 结构移动至以 head 为首地址的内核空间中            poll_initwait(&table);  // 初始化 table,详见 select 中的分析,见下参考          fdcount = do_poll(head, &table, end_time);          poll_freewait(&table);  // 释放 table            // 将 revents 复制到用户空间          for (walk = head; walk; walk = walk->next) {                  struct pollfd *fds = walk->entries;                  int j;                    for (j = 0; j < walk->len; j++, ufds++)                          if (__put_user(fds[j].revents, &ufds->revents))                                  goto out_fds;            }            err = fdcount;  out_fds:          walk = head->next;          while (walk) {                  struct poll_list *pos = walk;                  walk = walk->next;                  kfree(pos);          }            return err;  }

do_sys_poll() 函数也是分为三步实现

  1. 将用户空间的数据复制到内核空间
  2. 调用核心实现 do_poll()
  3. 将就绪的事件数据从内核空间复制到用户空间

do_poll()

static int do_poll(struct poll_list *list, struct poll_wqueues *wait,                     struct timespec64 *end_time)  {          poll_table* pt = &wait->pt;          ktime_t expire, *to = NULL;          int timed_out = 0, count = 0;          u64 slack = 0;          __poll_t busy_flag = net_busy_loop_on() ? POLL_BUSY_LOOP : 0;          unsigned long busy_start = 0;            /* Optimise the no-wait case */          if (end_time && !end_time->tv_sec && !end_time->tv_nsec) {                  pt->_qproc = NULL;                  timed_out = 1;          }            if (end_time && !timed_out)                  slack = select_estimate_accuracy(end_time);  // 估算进程等待的时间,函数返回 纳秒            for (;;) {                  struct poll_list *walk;                  bool can_busy_loop = false;                    for (walk = list; walk != NULL; walk = walk->next) {                          struct pollfd * pfd, * pfd_end;                            pfd = walk->entries;                          pfd_end = pfd + walk->len;                          for (; pfd != pfd_end; pfd++) {  // 对所有的 struct pollfd 遍历处理,do_pollfd 为单独处理一个 fd 的函数                                  /*                                   * Fish for events. If we found one, record it                                   * and kill poll_table->_qproc, so we don't                                   * needlessly register any other waiters after                                   * this. They'll get immediately deregistered                                   * when we break out and return.                                   */                                  if (do_pollfd(pfd, pt, &can_busy_loop,                                                busy_flag)) {                                          count++;                                          pt->_qproc = NULL;                                          /* found something, stop busy polling */                                          busy_flag = 0;                                          can_busy_loop = false;                                  }                          }                  }                  /*                   * All waiters have already been registered, so don't provide                   * a poll_table->_qproc to them on the next loop iteration.                   */                  pt->_qproc = NULL;                  if (!count) {                          count = wait->error;                          if (signal_pending(current))                                  count = -EINTR;                  }                  if (count || timed_out)                          break;                    /* only if found POLL_BUSY_LOOP sockets && not out of time */                  if (can_busy_loop && !need_resched()) {                          if (!busy_start) {                                  busy_start = busy_loop_current_time();                                  continue;                          }                          if (!busy_loop_timeout(busy_start))                                  continue;                  }                  busy_flag = 0;                    /*                   * If this is the first loop and we have a timeout                   * given, then we convert to ktime_t and set the to                   * pointer to the expiry value.                   */                  if (end_time && !to) {                          expire = timespec64_to_ktime(*end_time);                          to = &expire;                  }                    if (!poll_schedule_timeout(wait, TASK_INTERRUPTIBLE, to, slack))  // 调度直到超时                          timed_out = 1;          }          return count;  }

这个函数写的很清楚了,也有很多注释

  1. can_busy_loop 是和 CONFIG_NET_RX_BUSY_POLL 配置相关的,不算通用处理情况,先忽略不考虑
  2. count 为函数的返回值,在 do_pollfd 有返回匹配的掩码时递增,为就绪的文件描述符数量,无就绪文件的时候为等待队列中的错误码
  3. pt->_qproc 为文件poll操作调用的函数,= NULL 的操作在注释中已经说明,函数已经注册到队列中,不必再次注册. 这个函数相关的内容可以在另外一篇 select(2) 找到具体的说明
/*   * Fish for events. If we found one, record it and kill poll_table->_qproc, so we don't   * needlessly register any other waiters after this. They'll get immediately deregistered   * when we break out and return.   */    /*   * All waiters have already been registered, so don't provide a poll_table->_qproc to them on the next loop iteration.   */

do_pollfd()

/*   * Fish for pollable events on the pollfd->fd file descriptor. We're only   * interested in events matching the pollfd->events mask, and the result   * matching that mask is both recorded in pollfd->revents and returned. The   * pwait poll_table will be used by the fd-provided poll handler for waiting,   * if pwait->_qproc is non-NULL.   */  static inline __poll_t do_pollfd(struct pollfd *pollfd, poll_table *pwait,                                       bool *can_busy_poll,                                       __poll_t busy_flag)  {          __poll_t mask;          int fd;            mask = 0;          fd = pollfd->fd;          if (fd >= 0) {                  struct fd f = fdget(fd);                  mask = EPOLLNVAL;  // 0x20                  if (f.file) {                          /* userland u16 ->events contains POLL... bitmap */                          // 设置关注的事件                          __poll_t filter = demangle_poll(pollfd->events) |                                                  EPOLLERR | EPOLLHUP;                          mask = DEFAULT_POLLMASK;  // (EPOLLIN | EPOLLOUT | EPOLLRDNORM | EPOLLWRNORM)                          if (f.file->f_op->poll) {                                  pwait->_key = filter;                                  pwait->_key |= busy_flag;  // key 在唤醒函数的时候用到                                  mask = f.file->f_op->poll(f.file, pwait);  // 获取就绪的文件掩码                                  if (mask & busy_flag)                                          *can_busy_poll = true;                          }                          /* Mask out unneeded events. */                          mask &= filter;  // 将文件返回的事件掩码与关注的事件做与操作得到 关注的就绪事件掩码                          fdput(f);                  }          }          /* ... and so does ->revents */          pollfd->revents = mangle_poll(mask);  // 设置就绪掩码            return mask;  }

讨论在不考虑错误的情况下,
poll(2) 返回的是revents 非 0 的个数,在 do_pollfd() 中返回一个非 0 的 mask,poll(2) 返回的 count 就 +1。
mask = 0 有两种可能:

  1. 和 filter 做与运算,但是这样做有一个前提就是可以取到 fd
  2. fd < 0,这种属于无意义的fd了,属于用户的问题

在已了解的fd中: eventfd 和普通的文件poll函数返回情况

  • EPOLLIN 或者 EPOLLOUT 或两个都存在
  • (EPOLLIN | EPOLLOUT | EPOLLRDNORM | EPOLLWRNORM)

当关注的事件不在以上事件中,是可能返回 0,而count不增加的

struct pollfd fds[n];  rn = poll(fds, n, 0);  for (int i = 0; i < rn; ++i)          if (fds[i].revents ...)

像上面这种操作是有风险的,会访问不到rn之后的fd。

mangle_poll() 设置就绪掩码

展开一下 就绪掩码的设置函数, __MAP 函数有点绕, 大概就是将 v & from 转换至靠近 to 大小的数值,没太明白为什么这么做。在 4.17 内核中 POLLIN 和 EPOLLIN 这类宏定义大小是一样的。

#define __MAP(v, from, to)           (from < to ? (v & from) * (to/from) : (v & from) / (from/to))    static inline __poll_t demangle_poll(u16 val) {      return (__force __poll_t)__MAP(val, POLLIN, (__force __u16)EPOLLIN) |             (__force __poll_t)__MAP(val, POLLOUT, (__force __u16)EPOLLOUT) |             (__force __poll_t)__MAP(val, POLLPRI, (__force __u16)EPOLLPRI) |             (__force __poll_t)__MAP(val, POLLERR, (__force __u16)EPOLLERR) |             (__force __poll_t)__MAP(val, POLLNVAL, (__force __u16)EPOLLNVAL) |             (__force __poll_t)__MAP(val, POLLRDNORM,                                     (__force __u16)EPOLLRDNORM) |             (__force __poll_t)__MAP(val, POLLRDBAND,                                     (__force __u16)EPOLLRDBAND) |             (__force __poll_t)__MAP(val, POLLWRNORM,                                     (__force __u16)EPOLLWRNORM) |             (__force __poll_t)__MAP(val, POLLWRBAND,                                     (__force __u16)EPOLLWRBAND) |             (__force __poll_t)__MAP(val, POLLHUP, (__force __u16)EPOLLHUP) |             (__force __poll_t)__MAP(val, POLLRDHUP, (__force __u16)EPOLLRDHUP) |             (__force __poll_t)__MAP(val, POLLMSG, (__force __u16)EPOLLMSG);  }

参考

select 源码分析,上一篇写的关于 select 的分析,有一些关于 poll 结构和文件回调的分析。