python递归-三元表达式-列表生成式-字典生成式-匿名函数-部分内置函数-04

  • 2019 年 10 月 7 日
  • 笔记

递归

递归: # 函数在调用阶段直接或间接地又调用了自身

应用场景: # 将列表中的数字依次打印出来(循环的层数是你必须要考虑的点)   –>  l = [1, [2, [3, [4, [5, [6, [7, [8, [9, [10, [11, [12, [13, ]]]]]]]]]]]]]

# 循环的写法, 列表嵌套越多层越麻烦  for i in l:  # 推导思路      if type(i) is int:          print(i)      else:          for item in i:              if type(item) is int:                  print(item)              else:                  for j in item:                      if type(item) is int:                          print(item)                      else:                          ...  # 函数体的顶用方式(还有一是前面提到过的pass,推荐还是使用 pass来顶替,比较明目)                          # 下方嵌套多级循环,往里面取到更下一层列表中的元素      # 递归的写法,代码体简短,不需要考虑循环次数  def get_num(l):      for i in l:          if type(i) is int:              print(i, end=' - ')          else:              get_num(i)      get_num(l)  # 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 

递归的优点: 递归函数不要考虑循环的次数 只需要把握结束的条件即可

递归的两个阶段

  回溯:# 从外向里一层一层递归调用下去,回溯阶段必须要有一个明确的结束条件,每进入下一次递归时,问题的规模都应该有所减少(单纯地重复调用自身是毫无意义的)

  递推: # 递推就是从里向外一层一层结束递归

递归案例:

def index():      print('from index')      login()    def login():      print('from login')      index()    login()  # ..........................此处省略一大堆报错............................................  # File "E:/PyCharm 2019.1.3/ProjectFile/day010/day012/01 函数递归.py", line 120, in index  #     print('from index')  # RecursionError: maximum recursion depth exceeded while calling a Python object  # 意思是超出了最大递归限数

从上述案例中可得知 python解释限制了递归的深度(不然就是无限循环下去,直到你的内存溢出,然后。。。emmm)

那么下面我们就来测试一下 python解释器中的递归深度

# 1.暴力测试 --> 997、998左右  count = 0  def index():      global count      print(count)      count += 1      index()      index()  # .....此处省略报错  # 997  # 最后打印的数字是 997,意味着 python解释器的递归深度约为997    # 2.getrecursionlimit  import sys  print(sys.getrecursionlimit())  # 不是很精确  # 1000

那么如何修改默认的递归深度呢?

# 修改递归深度限制  import sys  sys.setrecursionlimit(1100)

应用场景2(有序列表中元素的二分法查找)

# 抛去 成员运算 in 可以直接返回元素在不在列表中,下面探究递归运用  # 歧义命名 l_find,  #   这里的 l_find 代表“列表查找”,可能会与下面的往右分割列表查找,往左分割存在歧义  #   所以命名规范里的见名知意也要注意,避免引起歧义  l = [1, 2, 3, 4, 5, 6, 7, 8, 9]  # 默认约定输入的必须是数字(乱输的咱就不考虑在内了)  find_num = int(input("请输入您要查找的数字>>>:").strip())      def l_find(find_num, l):      # print(l) # 可以打印中间步骤      mid_index = len(l) // 2      if not l:  # 如果是空列表了,说明该元素不在列表里          return False      # 如果目标元素大于中间元素,那就说明元素在右边      if find_num > l[mid_index]:          # 利用列表的切片知识,将列表切割成一个新的列表,用于递归继续查找          tmp_l = l[mid_index + 1:]          res = l_find(find_num, tmp_l)      elif find_num == l[mid_index]:          # print("get it", find_num)          return True      # 如果目标元素小于中间元素,那就说明元素在左边      else:          tmp_l = l[0:mid_index]          res = l_find(find_num, tmp_l)      return res      is_exits = l_find(find_num, l)  if is_exits:      print(f"您所要查找的数字{find_num} 在列表l 中。")  else:      print(f"您所要查找的数字{find_num} 不在列表l 中。")  # 请输入您要查找的数字>>>:9  # 您所要查找的数字9 在列表l 中。

算法: 解决问题的高效率的方法(不仅仅局限于数学运算)

三元表达式

先来看这样一段代码

# 比较两个数的大小  def my_max(x,y):      if x > y:          return x      else:          return y

三元表达式实现: res = x if x > y else y ,短短一行就实现了上面函数的功能

三元表达式固定格式: 值1 if 条件 else 值2 ,如果条件成立,返回 值1 ,不成立返回 值2

常见应用场景: 在编程的时候请尽量避免使用三元表达式嵌套,想要知道结果要去推算,不够直接

is_free = input("请输入是否免费(y/n)>>>:")  is_free = '免费' if is_free == 'y' else '收费'  print(is_free)  # 请输入是否免费(y/n)>>>:n  # 收费

列表生成式(知识点理解可能有误)

需求: 给列表中的除了 macbook的名字都加个马甲 new_ –> new_tank

# 给列表中的除了 macbook的名字都加个马甲 new_ --> new_tank  (macbook被删掉了这点忽略)  # for循环实现  staff = ['tank', 'nick', 'oscar', 'sean', 'macbook']  staff2 = []  for people in staff:      if people != 'macbook':          staff2.append("new_%s" %people)  print(staff2)  # ['new_tank', 'new_nick', 'new_oscar', 'new_sean']      # 列表表达式实现  staff = ['tank', 'nick', 'oscar', 'sean', 'macbook']  print(['new_%s' %name for name in staff if name != "macbook"])  # macbook 不满足条件,所以被滤过了  # ['new_tank', 'new_nick', 'new_oscar', 'new_sean']  # print(['new_' + name for name in staff if name != "macbook"])  # 跟上条语句一样的执行效果,不过python对推荐字符串直接相加的拼接方式,它的效率十分的低!应尽量避免使用!      # 三元表达式结合列表表达式实现  staff = ['tank', 'nick', 'oscar', 'sean', 'macbook']  print([f'new_{name}' if name != 'macbook' else name for name in staff])  # ['new_tank', 'new_nick', 'new_oscar', 'new_sean', 'macbook']

  可见列表生成式只用了一行就实现了。

列表生成式原理(if后面可以不写)

'''  先for循环依次取出列表里面的元素      然后交由 if 判断, 条件成立才会把元素交给for 前面的代码      如果当前条件不成立, 当前元素直接舍弃          不支持再加else 的情况(for 有 else , if 也有 else  会造成冲突)  '''

字典生成式

需求:将 l1 = ['name', 'age', 'hobby'] , l2 = ['jason', 18, 'DBJ'] 两个列表分别作为键值组成一个字典

l1 = ['name', 'age', 'hobby']  l2 = ['jason', 18, 'DBJ']    # for 循环利用字典特性生成字典  d = {}  for i in range(len(l1)):      d[l1[i]] = l2[i]  print(d)  # {'name': 'jason', 'age': 18, 'hobby': 'DBJ'}    # 利用内置函数 zip,将 l1与l2 组合成元组,然后利用内置函数dict强转成字典  d1 = dict(zip(l1, l2))  print(d1, zip(l1, l2))  # {'name': 'jason', 'age': 18, 'hobby': 'DBJ'} <zip object at 0x00000248171F21C8>    # d2 将l1 与 l2 中的各元素分别作为键值组成一个新的字典,过滤掉 age 这一个键值   ---> 字典生成式  d2 = {k: v for k, v in zip(l1, l2) if k != 'age'}  print(d1, d2)  # {'name': 'jason', 'age': 18, 'hobby': 'DBJ'} {'name': 'jason', 'hobby': 'DBJ'}

集合生成式也可以同理推导出来(没有元组生成器) — > 列表生成器、字典生成器可能还有描述有误具体还要学到后面才知道。

生成器表达式的意义: 用来创建其他任何类型的序列,增加代码可读性一定程度上可以更高效

列表生成式与三元表达式结合小案例

hello_list = ['halo', 'hi', 'nice to meet you']    hello_list2 = [f"↑{item}" for item in hello_list if len(item) < 10]  print(hello_list2)  # ['↑halo', '↑hi']    hello_list3 = [f"↑{item}" if len(item) < 10 else item for item in hello_list]  # 利用三元表达式实现不同处理  print(hello_list3)  # ['↑halo', '↑hi', 'nice to meet you']

匿名函数

匿名函数: 没有名字的函数

特点: 临时存在,调用完立即销毁

关键字: lambda

案例:

print(lambda x, y: x + y)  # <function <lambda> at 0x000001DAC45B2E18>  print((lambda x, y: x + y)(1, 3))  # 4    # :左边的相当于函数的形参  # :右边的相当于函数的返回值  # 匿名函数通常不会单独使用,正常情况下是配合内置函数(也可以是自己写的函数)一起使用的

内置函数(部分)

python3.6 中的内置函数

max 求最大值、min 求最小值

# 字典值比较  d = {      'egon': 30000,      'jason': 88888888888,      'nick': 3000,      'tank': 1000  }  print(max(d, key=lambda name: d[name]))  # 比较薪资 返回人名  print(min(d, key=lambda name: d[name]))    # key(函数的第二个关键字参数)那里返回什么,他就比较什么,最后返回的还是for 循环到的

map 并行遍历(可接收一个自定义函数)

# map 映射  l = [1, 2, 3, 4, 5, 6]  print(list(map(lambda x: x + 5, l)))  # 基于for循环  # [6, 7, 8, 9, 10, 11]

zip 并行遍历

# zip 拉链  # 基于for循环  l1 = [1, 2, ]  l2 = ['jason', 'egon', 'tank']  l3 = ['a', 'b', 'c']  print(list(zip(l1, l2, l3)))  # [(1, 'jason', 'a'), (2, 'egon', 'b')]

filter 过滤

# filter 过滤  l = [1, 2, 3, 4, 5, 6]  print(list(filter(lambda x: x != 3, l)))  # 基于for循环  # [1, 2, 4, 5, 6]

sorted 排序

# sorted排序  l = ['jason', 'egon', 'nick', 'tank']  print(sorted(l, reverse=True))  # ['tank', 'nick', 'jason', 'egon']

reduce 合并(可指定初值)

from functools import reduce  l = [1, 2, 3, 4, 5, 6]  print(reduce(lambda x, y: x + y, l, 19))  # 19初始值  第一个参数  # 40  # 当初始值不存在的情况下 按照下面的规律  #   第一次先获取两个元素 相加  #   之后每次获取一个与上一次相加的结果再相加