全连接神经网络(下)

  • 2019 年 10 月 6 日
  • 筆記

全连接神经网络(下)

0.说在前面1.Batch Normalization1.1 什么是BN?1.2 前向传播1.3 反向传播2.Dropout2.1 什么是Dropout?2.2 前向传播2.3 反向传播3.任意隐藏层数的全连接网络4.训练模型5.作者的话

0.说在前面

说点感慨的,有人问我为何每日都在分享,从来没有间断过,我只有一个答案,那就是:坚持

另外,我已经将作业详解新建了一个菜单,可以在公众号里面找到作业详解菜单,里面有之前的所有作业详解!

ok,我们继续来上次cs231n的assignment2的全连接神经网络第二篇。这一篇则重点研究构建任意层数的全连接网络!下面我们一起来实战吧!

1.Batch Normalization

1.1 什么是BN?

什么是Batch Normalization,以及相关的前向传播,反向传播推导,这里给出一个大佬的网址,大家可以自行mark!

Understanding the backward pass through Batch Normalization Layer

简单来说,Batch Normalization就是在每一层的wx+b和f(wx+b)之间加一个归一化。

什么是归一化,这里的归一化指的是:将wx+b归一化成:均值为0,方差为1!

下面给出Batch Normalization的算法和反向求导公式,下图来自于网上上述链接~

1.2 前向传播

前向与后向传播均在layes.py文件内!

其实这里比较好写,原因在于注释提示了很多比如注释里面的:

running_mean = momentum * running_mean + (1 - momentum) * sample_mean  running_var = momentum * running_var + (1 - momentum) * sample_var  

输入输出:

输入:      - x: Data of shape (N, D)      - gamma: Scale parameter of shape (D,)      - beta: Shift paremeter of shape (D,)      - bn_param: Dictionary with the following keys:        - mode: 'train' or 'test'; required        - eps: Constant for numeric stability        - momentum: Constant for running mean / variance.        - running_mean: Array of shape (D,) giving running mean of features        - running_var Array of shape (D,) giving running variance of features    返回元组:      - out: of shape (N, D)      - cache: A tuple of values needed in the backward pass  

完整实现:

相关公示的注释已经写上,对上述的算法进行实现即可!

def batchnorm_forward(x, gamma, beta, bn_param):      mode = bn_param['mode']      eps = bn_param.get('eps', 1e-5)      momentum = bn_param.get('momentum', 0.9)        N, D = x.shape      running_mean = bn_param.get('running_mean', np.zeros(D, dtype=x.dtype))      running_var = bn_param.get('running_var', np.zeros(D, dtype=x.dtype))        out, cache = None, None      if mode == 'train':          # mini-batch mean miu_B (1,D)          sample_mean = np.mean(x,axis=0,keepdims=True)          # miin-batch variance sigema_square (1,D)          sample_var = np.var(x,axis=0,keepdims=True)          # normalize (N,D)          x_normalize = (x-sample_mean)/np.sqrt(sample_var+eps)          # scale and shift          out = gamma*x_normalize+beta          cache=(x_normalize,gamma,beta,sample_mean,sample_var,x,eps)          # update          running_mean = momentum * running_mean + (1 - momentum) * sample_mean          running_var = momentum * running_var + (1 - momentum) * sample_var      elif mode == 'test':          x_normalize = (x-running_mean)/np.sqrt(running_var+eps)          out = gamma*x_normalize+beta      else:          raise ValueError('Invalid forward batchnorm mode "%s"' % mode)      # Store the updated running means back into bn_param      bn_param['running_mean'] = running_mean      bn_param['running_var'] = running_var        return out, cache  

1.3 反向传播

反向传播很重要,而在assignment1中对两层神经网络进行手推,这里是一样的原理,由于自己写的有点乱,就不放手推了,给出网上的推导:

输入输出:

输入:      - dout: Upstream derivatives, of shape (N, D)      - cache: Variable of intermediates from batchnorm_forward.    返回元组:      - dx: Gradient with respect to inputs x, of shape (N, D)      - dgamma: Gradient with respect to scale parameter gamma, of shape (D,)      - dbeta: Gradient with respect to shift parameter beta, of shape (D,)  

完整实现:

这里建议将上述算法与反向传播公式联系起来一起推,最好手推,有一个重要点提一下,就是在对x求导的时候,是层层嵌套,所以采用算法当中的分治法解决,分为多个子问题,链式推导,方便简单,而且不容易出错!

def batchnorm_backward(dout, cache):      dx, dgamma, dbeta = None, None, None      x_normalized, gamma, beta, sample_mean, sample_var, x, eps = cache      N, D = x.shape      dx_normalized = dout * gamma       # [N,D]      x_mu = x - sample_mean             # [N,D]      sample_std_inv = 1.0 / np.sqrt(sample_var + eps)    # [1,D]      dsample_var = -0.5 * np.sum(dx_normalized * x_mu, axis=0, keepdims=True) * sample_std_inv**3      dsample_mean = -1.0 * np.sum(dx_normalized * sample_std_inv, axis=0, keepdims=True) - 2.0 * dsample_var * np.mean(x_mu, axis=0, keepdims=True)      dx1 = dx_normalized * sample_std_inv      dx2 = 2.0/N * dsample_var * x_mu      dx = dx1 + dx2 + 1.0/N * dsample_mean      dgamma = np.sum(dout * x_normalized, axis=0, keepdims=True)      dbeta = np.sum(dout, axis=0, keepdims=True)      return dx, dgamma, dbeta  

2.Dropout

2.1 什么是Dropout?

Dropout可以理解为遗抑制过拟合的一种正规化手段!在训练过程中,对每个神经元,以概率p保持它的激活状态。下面给出dropout的示意图:

回答先图b与图a明显的区别是,指向变少了,也就是去掉了很多传递过程,但在实际中不经常用,因为容易去掉一些关键信息!

2.2 前向传播

前向与反向传播在layers.py文件中!

在注释中提到了cs231n的一个关键点,大家可以去下面链接去看什么是dropout:

cs231n直通点

输入输出

输入:      - x: Input data, of any shape      - dropout_param: A dictionary with the following keys:        - p: Dropout parameter. We keep each neuron output with probability p.        - mode: 'test' or 'train'. If the mode is train, then perform dropout;          if the mode is test, then just return the input.        - seed: Seed for the random number generator. Passing seed makes this          function deterministic, which is needed for gradient checking but not          in real networks.     输出:      - out: Array of the same shape as x.      - cache: tuple (dropout_param, mask). In training mode, mask is the dropout        mask that was used to multiply the input; in test mode, mask is None.  

完整实现

具体实现只需要记住一句话,以某一概率失活!!!也就是让当前的数据乘以每个数据的失活概率即可!

def dropout_forward(x, dropout_param):      p, mode = dropout_param['p'], dropout_param['mode']      if 'seed' in dropout_param:          np.random.seed(dropout_param['seed'])      mask = None      out = None      if mode == 'train':          mask = (np.random.rand(*x.shape) < p)   #以某一概率随机失活          out = x * mask      elif mode == 'test':          out=x      cache = (dropout_param, mask)      out = out.astype(x.dtype, copy=False)      return out, cache  

2.3 反向传播

输入输出:

输入:      - dout: Upstream derivatives, of any shape      - cache: (dropout_param, mask) from dropout_forward.  输出:      - dx  

完整实现:

实现就是直接上层的梯度乘以当前的梯度,上层梯度为dout,当前梯度为存储的mask。

def dropout_backward(dout, cache):      dropout_param, mask = cache      mode = dropout_param['mode']        dx = None      if mode == 'train':          dx = dout * mask      elif mode == 'test':          dx = dout      return dx  

3.任意隐藏层数的全连接网络

对fc_net.py进行修改!

对于这一块填写,之前一直有点不懂,还好今天重新看了一下注释,觉得很清楚了,建议都去看看注释的todo或者解释,很详细!!!

以这个为例:

首先我们可以看到所构建的全连接网络结构为:

网络的层数为L层,L-1表示重复{blok}L-1次,注释中都有的!

{affine - [batch/layer norm] - relu - [dropout]} x (L - 1) - affine - softmax  

输入输出:

为了保持原文意思,这里没有翻译出来,大家克服一下,看英文,如果不懂可以留言!

  初始化一个新的全连接网络.          输入:          - hidden_dims: A list of integers giving the size of each hidden layer.          - input_dim: An integer giving the size of the input.          - num_classes: An integer giving the number of classes to classify.          - dropout: Scalar between 0 and 1 giving dropout strength. If dropout=1 then            the network should not use dropout at all.          - normalization: What type of normalization the network should use. Valid values            are "batchnorm", "layernorm", or None for no normalization (the default).          - reg: Scalar giving L2 regularization strength.          - weight_scale: Scalar giving the standard deviation for random            initialization of the weights.          - dtype: A numpy datatype object; all computations will be performed using            this datatype. float32 is faster but less accurate, so you should use            float64 for numeric gradient checking.          - seed: If not None, then pass this random seed to the dropout layers. This            will make the dropout layers deteriminstic so we can gradient check the            model.  

下面两行#号中间为填写内容!我们所实现的目标大家可以看TODO,里面说的很详细,我简单说一下,就是来存储w与b,而这个存储的作用,则会在后面的loss用到!

class FullyConnectedNet(object):      def __init__(self, hidden_dims, input_dim=3*32*32, num_classes=10,                   dropout=1, normalization=None, reg=0.0,                   weight_scale=1e-2, dtype=np.float32, seed=None):          self.normalization = normalization          self.use_dropout = dropout != 1          self.reg = reg          self.num_layers = 1 + len(hidden_dims)          self.dtype = dtype          self.params = {}          ############################################################################          num_neurons = [input_dim] + hidden_dims + [num_classes]          # 看一开始的时候注释就说了L-1次,所以这里要前去1          for i in range(len(num_neurons) - 1):              self.params['W' + str(i + 1)] = np.random.randn(num_neurons[i], num_neurons[i+1]) * weight_scale              self.params['b' + str(i + 1)] = np.zeros(num_neurons[i+1])              # 这里处理的总循环式L-1,i最大为L-2,而batchnormalization只在层与层中间,也就是比如三个结点就只有两个间隔,所以这里是到L-2              if self.normalization=='batchnorm' and i < len(num_neurons) - 2:                  self.params['beta' + str(i + 1)] = np.zeros([num_neurons[i+1]])                  self.params['gamma' + str(i + 1)] = np.ones([num_neurons[i+1]])          ############################################################################          self.dropout_param = {}          if self.use_dropout:              self.dropout_param = {'mode': 'train', 'p': dropout}              if seed is not None:                  self.dropout_param['seed'] = seed          self.bn_params = []          if self.normalization=='batchnorm':              self.bn_params = [{'mode': 'train'} for i in range(self.num_layers - 1)]          if self.normalization=='layernorm':              self.bn_params = [{} for i in range(self.num_layers - 1)]            # Cast all parameters to the correct datatype          for k, v in self.params.items():              self.params[k] = v.astype(dtype)  

目标:

计算全连接网络的损失与梯度

输入输出:

输入:      - X: Array of input data of shape (N, d_1, ..., d_k)      - y: Array of labels, of shape (N,). y[i] gives the label for X[i].    返回:      If y is None, then run a test-time forward pass of the model and return:      - scores: Array of shape (N, C) giving classification scores, where scores[i, c] is the classification score for X[i] and class c.  

完整实现:

这里的实现思路就是按照上面一开始的注释提到的:

{affine - [batch/layer norm] - relu - [dropout]} x (L - 1) - affine - softmax  

下面一起来看:具体代码在两行长#号中间:

下面依此调用affine、batch、relu、dropout的前向传播来实现!紧接着求出loss,最后来调用跟前向传播相对的反向传播来求梯度!

def loss(self, X, y=None):          X = X.astype(self.dtype)          mode = 'test' if y is None else 'train'          if self.use_dropout:              self.dropout_param['mode'] = mode          if self.normalization=='batchnorm':              for bn_param in self.bn_params:                  bn_param['mode'] = mode          scores = None          cache = {}          scores = X          ############################################################################          # 前向传播          # {affine - [batch/layer norm] - relu - [dropout]} x (L - 1) - affine - softmax          for i in range(1, self.num_layers + 1):              scores, cache['fc'+str(i)] = affine_forward(scores, self.params['W' + str(i)], self.params['b' + str(i)])              # Do not add relu, batchnorm, dropout after the last layer              if i < self.num_layers:                  if self.normalization == "batchnorm":                      D = scores.shape[1]                      # self.bn_params[i-1] since the provided code above initilizes bn_params for layers from index 0, here we index layer from 1.                      scores, cache['bn'+str(i)] = batchnorm_forward(scores, self.params['gamma'+str(i)], self.params['beta'+str(i)], self.bn_params[i-1])                  scores, cache['relu'+str(i)] = relu_forward(scores)                  if self.use_dropout:                      scores, cache['dropout'+str(i)] = dropout_forward(scores, self.dropout_param)          ############################################################################            # If test mode return early          if mode == 'test':              return scores            loss, grads = 0.0, {}          ############################################################################          # 计算loss          loss, last_grad = softmax_loss(scores, y)          loss += 0.5 * self.reg * sum([np.sum(self.params['W' + str(i)]**2) for i in range(1, self.num_layers + 1)])          ############################################################################            ############################################################################          # 反向传播          for i in range(self.num_layers, 0, -1):              if i < self.num_layers: # No ReLU, dropout, Batchnorm for the last layer                  if self.use_dropout:                      last_grad = dropout_backward(last_grad, cache['dropout' + str(i)])                  last_grad = relu_backward(last_grad, cache['relu' + str(i)])                  if self.normalization == "batchnorm":                      last_grad, grads['gamma'+str(i)], grads['beta'+str(i)] = batchnorm_backward(last_grad, cache['bn'+str(i)])              last_grad, grads['W' + str(i)], grads['b' + str(i)] = affine_backward(last_grad, cache['fc' + str(i)])              grads['W' + str(i)] += self.reg * self.params['W' + str(i)]          ############################################################################          return loss, grads  

4.训练模型

最后,回到FullyConnectedNets.ipynb文件中,依此调用即可,最后填充相应的训练一个好的模型的代码!

hidden_dims = [100] * 4  range_weight_scale = [1e-2, 2e-2, 5e-3]  range_lr = [1e-5, 5e-4, 1e-5]    best_val_acc = -1  best_weight_scale = 0  best_lr = 0    print("Training...")    for weight_scale in range_weight_scale:      for lr in range_lr:          model = FullyConnectedNet(hidden_dims=hidden_dims, reg=0.0,                                   weight_scale=weight_scale)          solver = Solver(model, data, update_rule='adam',                          optim_config={'learning_rate': lr},                          batch_size=100, num_epochs=5,                          verbose=False)          solver.train()          val_acc = solver.best_val_acc          print('Weight_scale: %f, lr: %f, val_acc: %f' % (weight_scale, lr, val_acc))            if val_acc > best_val_acc:              best_val_acc = val_acc              best_weight_scale = weight_scale              best_lr = lr              best_model = model  print("Best val_acc: %f" % best_val_acc)  print("Best weight_scale: %f" % best_weight_scale)  print("Best lr: %f" % best_lr)  

最终要求的精度在验证集上至少50%!

上面训练后的最好结果为:

Validation set accuracy:  0.528  Test set accuracy:  0.527