ZooKeeper实现读写锁

  • 2019 年 10 月 3 日
  • 筆記

在上一篇文章,我们已经实现了分布式锁。今天更进一步,在分布式锁的基础之上,实现读写锁。

完整代码在 https://github.com/SeemSilly/codestory/tree/master/research-zoo-keeper

1 读写锁的概念

参考维基百科的条目: https://zh.wikipedia.org/wiki/读写锁

读写锁是计算机程序的并发控制的一种同步机制,用于解决读写问题,读操作可并发重入,写操作是互斥的。 读写锁有多种读写权限的优先级策略,可以设计为读优先、写优先或不指定优先级。

  • 读优先:允许最大并发的读操作,但可能会饿死写操作;因为写操作必须在没有任何读操作的时候才能够执行。
  • 写优先:只要排队队列中有写操作,读操作就必须等待;
  • 不指定优先级:对读操作和写操作不做任何优先级的假设

不指定优先级的策略,最适合使用ZooKeeper的子节点模式来实现,今天就来尝试这种策略。

2 锁设计

同前面介绍的普通分布式锁,也使用子节点模式实现。先用容器模式(CreateMode.CONTAINER)创建唯一的锁节点,每个锁客户端在锁节点下使用临时循序模式(CreateMode. SEQUENTIAL)创建子节点。这些子节点会自动在名称后面追加10位数字。

2.1 如何标识读锁还是写锁?

有两种简单的方案:在子节点名中标识、在节点的值中标识。如果采用在值中标识,每次子节点列表后,还需要再分别读一下子节点的值,才能判断是读锁还是写锁,会比较耗时。如果在子节点名称中标识,会面临一个问题:在同一个节点中创建的子节点,如果给定的名称不同,追加的10位数字是否仍然是递归的?

写个测试用例验证一下。

public class SequentialTest extends TestBase {    @Test    public void testSequential() throws Exception {      String rootNodeName = "/container-" + System.currentTimeMillis();      ZooKeeperBase zooKeeper = new ZooKeeperBase(address);      zooKeeper.createRootNode(rootNodeName, CreateMode.CONTAINER);        Random random = new SecureRandom();      long lastNumber = -1L;      String[] prefixs = new String[] {"/a", "/b", "/c", "/d", "/e", "/f", "/g"};      for (int i = 0; i < 10; i++) {        int index = random.nextInt(prefixs.length);        String childNodeName = rootNodeName + prefixs[index];        String fullNodeName = zooKeeper.getZooKeeper().create(childNodeName, new byte[0],            ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);        long number = Long.parseLong(fullNodeName.substring(childNodeName.length()));        assert number == lastNumber + 1;        lastNumber = number;      }    }  }  

  

测试用例通过,说明在同一个Container中创建的子节点,不论提供的节点名是什么,后续追加的10位数字都是顺序递增的。这样,就可以使用节点名来区分读锁和写锁。

2.2   类设计

介绍分布式锁的时候,已经创建了阻塞锁 ChildrenBlockingLock,读写锁正好可以基于这个类做重载。

 

 

2.3   获取锁的逻辑

写锁是一个独占锁,逻辑跟普通分布式锁相同,只要它之前有锁就必须等待。所以,完全沿用阻塞锁的逻辑即可。

读锁允许并发,它之前可以有任意读锁,但不能有写锁。所以只需要判断有没有写锁即可。

3      关键代码

3.1   ChildrenNodeLock.java

这个类,主要是增加了一个获取排序后子节点列表的方法,这样方便实现读写锁的代码。当然,这个操作会增加一些耗时,如果子节点数量太大,可能不适用。

首先定义一个函数,用来返回子节点的前缀

/** 子节点的前缀,缺省是element,子类可以重载 */  protected String getChildPrefix() {    return "element";  }

 

然后定义一个内部类,子节点排序时会用到

/** 子节点名称比较 */  private class StringCompare implements Comparator<String> {    @Override    public int compare(String string1, String string2) {      return string1.substring(string1.length() - 10)          .compareTo(string2.substring(string2.length() - 10));    }  }

 

最后实现子节点排序方法,用于代替 getChildren 函数

/** 获取排好序的子节点列表 */  final public List<String> getOrderedChildren(String path, boolean watch)      throws KeeperException, InterruptedException {    List<String> children = getZooKeeper().getChildren(path, watch);    Collections.sort(children, new StringCompare());    return children;  }

 

3.2   ChildrenBlockingLock.java

在多客户端随机测试时,经常出现程序卡死的情况,无法正常退出。经过添加日志跟踪,发现WatchedEvent可能会丢失,也可能会发送给并不是注册事件的ZooKeeper客户端。在网上搜索,发现很多人也碰到类似问题。

简单修改了一下ChildrenBlockingLock#isLockSuccess等待信号的代码,从无参数的死等变成设置一定超时时间等待。关键代码如下

protected boolean isLockSuccess() {    boolean lockSuccess;    try {      while (true) {        String prevElementName = getPrevElementName();        if (prevElementName == null) {          log.trace("{} 没有更靠前的子节点,加锁成功", elementNodeName);          lockSuccess = true;          break;        } else {          // 有更小的节点,说明当前节点没抢到锁,注册前一个节点的监听。          log.trace("{} 监控 {} 的事件", elementNodeName, prevElementName);          getZooKeeper().exists(this.guidNodeName + "/" + prevElementName, true);          synchronized (mutex) {            // 等待最多一秒            mutex.wait(1000);            log.trace("{} 监控的 {} 有子节点变化", elementNodeName, guidNodeName);          }        }      }    } catch (KeeperException e) {      lockSuccess = false;    } catch (InterruptedException e) {      lockSuccess = false;    }    return lockSuccess;  }

 

3.3   写锁 ZooKeeperWriteLock.java

代码基本是沿用父类,只需要重载getChildPrefix()方法,

/** 返回写锁的前缀 */  protected String getChildPrefix() {    return "w-lock-";  }

 

3.4   读锁 ZooKeeperReadLock.java

同写锁相比,除了重载getChildPrefix()方法,还重载了getPrevElementName()用来查找最近一个写锁。

/** 返回读锁的前缀 */  protected String getChildPrefix() {    return "r-lock-";  }    /** 是写锁 */  private boolean isWriteLock(String elementName) {    return elementName.startsWith(ZooKeeperWriteLock.FLAG);  }    /** 读取前一个写锁 */  protected String getPrevElementName() throws KeeperException, InterruptedException {    List<String> elementNames = super.getOrderedChildren(this.guidNodeName, false);    super.traceOrderedChildren(this.guidNodeName, elementNames);    String prevWriteElementName = null;    for (String oneElementName : elementNames) {      if (this.elementNodeFullName.endsWith(oneElementName)) {        // 已经到了当前节点        break;      }      if (isWriteLock(oneElementName)) {        prevWriteElementName = oneElementName;      }    }    return prevWriteElementName;  }

 

4      测试用例

测试用例没想到好的判断方法,很难使用assert判断结果,因此做了简化,根据日志输出,靠人眼判断是否正确。

4.1   测试线程类

分别为都锁和写锁构建了两个内部类

/** 写锁线程 */  class WriteLockClient extends Thread {    ZooKeeperWriteLock writeLock;      public WriteLockClient() {      try {        this.writeLock = new ZooKeeperWriteLock(address);      } catch (IOException e) {      }    }      public void run() {      writeLock.lock(guidNodeName, this.getName());      try {        Thread.sleep(1000 + random.nextInt(20) * 100);      } catch (InterruptedException e) {      }      writeLock.release(guidNodeName, this.getName());    }  }    /** 读锁线程 */  class ReadLockClient extends Thread {    ZooKeeperReadLock readLock;      public ReadLockClient() {      try {        this.readLock = new ZooKeeperReadLock(address);      } catch (IOException e) {      }    }
public void run() { readLock.lock(guidNodeName, this.getName()); try { Thread.sleep(1000 + random.nextInt(20) * 100); } catch (InterruptedException e) { } readLock.release(guidNodeName, this.getName()); try { readLock.getZooKeeper().close(); } catch (InterruptedException e) { } } }

 

4.2   读-读锁测试

代码

@Test  public void testReadRead() throws IOException, InterruptedException {    ReadLockClient readLock1 = new ReadLockClient();    ReadLockClient readLock2 = new ReadLockClient();    readLock1.start();    readLock2.start();    readLock1.join();    readLock2.join();  }

 

测试结果可以看到,两个读锁并发执行

22:18.861 [Thread-2 INFO] r-lock-0000000000 get read lock : true  22:18.865 [Thread-1 INFO] r-lock-0000000001 get read lock : true  22:20.065 [Thread-2 INFO] r-lock-0000000000 release read lock  22:21.366 [Thread-1 INFO] r-lock-0000000001 release read lock

 

4.3   读-写锁测试

代码

@Test  public void testReadWrite() throws IOException, InterruptedException {    ReadLockClient readLock1 = new ReadLockClient();    WriteLockClient writeLock1 = new WriteLockClient();    readLock1.start();    Thread.sleep(50);    writeLock1.start();    readLock1.join();    writeLock1.join();  }

 

测试结果可以看到,首先获取读锁,释放之后才获取到写锁。

27:40.800 [Thread-1 INFO] r-lock-0000000000 get read lock : true  27:43.310 [Thread-1 INFO] r-lock-0000000000 release read lock  27:43.423 [Thread-2 INFO] w-lock-0000000001 get write lock : true  27:44.423 [Thread-2 INFO] w-lock-0000000001 release write lock

 

4.4   写-读锁测试

代码

@Test  public void testWriteRead() throws IOException, InterruptedException {    ReadLockClient readLock1 = new ReadLockClient();    WriteLockClient writeLock1 = new WriteLockClient();    writeLock1.start();    Thread.sleep(50);    readLock1.start();    writeLock1.join();    readLock1.join();  }

 

测试结果可以看到,首先获取写锁,释放之后才获取到读锁。

29:17.661 [Thread-2 INFO] w-lock-0000000000 get write lock : true  29:19.966 [Thread-2 INFO] w-lock-0000000000 release write lock  29:19.976 [Thread-1 INFO] r-lock-0000000001 get read lock : true  29:22.476 [Thread-1 INFO] r-lock-0000000001 release read lock

 

4.5   多客户端随机读写锁测试

测试代码

@Test  public void testRandomReadWriteLock() throws IOException, InterruptedException {    int threadCount = 20;    Thread[] lockThreads = new Thread[threadCount];    for (int i = 0; i < threadCount; i++) {      // 一定概率是写锁      boolean writeLock = random.nextInt(5) == 0;      if (writeLock) {        lockThreads[i] = new WriteLockClient();      } else {        lockThreads[i] = new ReadLockClient();      }      lockThreads[i].start();    }        for (int i = 0; i < threadCount; i++) {      lockThreads[i].join();    }  }

 

测试结果可以看出,如果连续多个读锁会并发执行。为了方便查看,我添加了一些横线分隔。

30:31.317 [Thread-1 INFO] w-lock-0000000000 get write lock : true  30:32.824 [Thread-1 INFO] w-lock-0000000000 release write lock  ------------------------------------------------------------------  30:32.834 [Thread-17 INFO] r-lock-0000000004 get read lock : true  30:32.835 [Thread-19 INFO] r-lock-0000000002 get read lock : true  30:32.835 [Thread-20 INFO] r-lock-0000000001 get read lock : true  30:32.836 [Thread-18 INFO] r-lock-0000000003 get read lock : true  30:34.135 [Thread-20 INFO] r-lock-0000000001 release read lock  30:34.634 [Thread-17 INFO] r-lock-0000000004 release read lock  30:34.935 [Thread-19 INFO] r-lock-0000000002 release read lock  30:35.036 [Thread-18 INFO] r-lock-0000000003 release read lock  ------------------------------------------------------------------  30:35.053 [Thread-16 INFO] w-lock-0000000005 get write lock : true  30:36.154 [Thread-16 INFO] w-lock-0000000005 release write lock  ------------------------------------------------------------------  30:36.160 [Thread-14 INFO] r-lock-0000000007 get read lock : true  30:36.160 [Thread-15 INFO] r-lock-0000000006 get read lock : true  30:38.160 [Thread-14 INFO] r-lock-0000000007 release read lock  30:38.661 [Thread-15 INFO] r-lock-0000000006 release read lock  ------------------------------------------------------------------  30:38.669 [Thread-13 INFO] w-lock-0000000008 get write lock : true  30:39.969 [Thread-13 INFO] w-lock-0000000008 release write lock  ------------------------------------------------------------------  30:39.976 [Thread-12 INFO] r-lock-0000000009 get read lock : true  30:39.977 [Thread-8 INFO] r-lock-0000000014 get read lock : true  30:39.977 [Thread-6 INFO] r-lock-0000000015 get read lock : true  30:39.984 [Thread-10 INFO] r-lock-0000000011 get read lock : true  30:39.985 [Thread-3 INFO] r-lock-0000000018 get read lock : true  30:39.984 [Thread-7 INFO] r-lock-0000000013 get read lock : true  30:39.984 [Thread-11 INFO] r-lock-0000000010 get read lock : true  30:39.983 [Thread-9 INFO] r-lock-0000000012 get read lock : true  30:39.983 [Thread-2 INFO] r-lock-0000000019 get read lock : true  30:39.982 [Thread-5 INFO] r-lock-0000000016 get read lock : true  30:39.986 [Thread-4 INFO] r-lock-0000000017 get read lock : true  30:40.986 [Thread-3 INFO] r-lock-0000000018 release read lock  30:41.086 [Thread-2 INFO] r-lock-0000000019 release read lock  30:41.285 [Thread-6 INFO] r-lock-0000000015 release read lock  30:41.576 [Thread-12 INFO] r-lock-0000000009 release read lock  30:42.185 [Thread-10 INFO] r-lock-0000000011 release read lock  30:42.186 [Thread-5 INFO] r-lock-0000000016 release read lock  30:42.187 [Thread-11 INFO] r-lock-0000000010 release read lock  30:42.286 [Thread-9 INFO] r-lock-0000000012 release read lock  30:42.586 [Thread-7 INFO] r-lock-0000000013 release read lock  30:42.677 [Thread-8 INFO] r-lock-0000000014 release read lock  30:42.887 [Thread-4 INFO] r-lock-0000000017 release read lock