GICv3驱动初始化
- 2020 年 4 月 9 日
- 筆記
linux驱动支持GICv1, GICv2, GICv3, GICv4驱动,本节我们重点来描述下GICv3的驱动初始化,结合ARM-Cortex平台详细描述
intc: interrupt-controller@666688888 { compatible = "arm,gic-v3"; #interrupt-cells = <3>; interrupt-controller; #redistributor-regions = <1>; redistributor-stride = <0x0 0x20000>; reg = <0x666688888 0x10000>, /* GICD */ <0x6666e8888 0x100000>; /* GICR * 8 */ interrupts = <GIC_PPI 8 IRQ_TYPE_LEVEL_HIGH>; interrupt-parent = <&intc>; };
这里面有几个重点的字段:可以参考内核文档arm,gic-v3.txt文档,
* ARM Generic Interrupt Controller, version 3 AArch64 SMP cores are often associated with a GICv3, providing Private Peripheral Interrupts (PPI), Shared Peripheral Interrupts (SPI), Software Generated Interrupts (SGI), and Locality-specific Peripheral Interrupts (LPI). Main node required properties: - compatible : should at least contain "arm,gic-v3". - interrupt-controller : Identifies the node as an interrupt controller - #interrupt-cells : Specifies the number of cells needed to encode an interrupt source. Must be a single cell with a value of at least 3. If the system requires describing PPI affinity, then the value must be at least 4. The 1st cell is the interrupt type; 0 for SPI interrupts, 1 for PPI interrupts. Other values are reserved for future use. The 2nd cell contains the interrupt number for the interrupt type. SPI interrupts are in the range [0-987]. PPI interrupts are in the range [0-15]. The 3rd cell is the flags, encoded as follows: bits[3:0] trigger type and level flags. 1 = edge triggered 4 = level triggered The 4th cell is a phandle to a node describing a set of CPUs this interrupt is affine to. The interrupt must be a PPI, and the node pointed must be a subnode of the "ppi-partitions" subnode. For interrupt types other than PPI or PPIs that are not partitionned, this cell must be zero. See the "ppi-partitions" node description below. Cells 5 and beyond are reserved for future use and must have a value of 0 if present. - reg : Specifies base physical address(s) and size of the GIC registers, in the following order: - GIC Distributor interface (GICD) - GIC Redistributors (GICR), one range per redistributor region - GIC CPU interface (GICC) - GIC Hypervisor interface (GICH) - GIC Virtual CPU interface (GICV) GICC, GICH and GICV are optional. - interrupts : Interrupt source of the VGIC maintenance interrupt.
- compatible: 用于和对应的驱动匹配,不再详说
- interrupt-cells用于描述一个中断源的详细信息,此值等于3代表interrupts中有三个字段
- 第一个字段代表中断类型(GIC_PPI, GIC_SPI)
- 第二个字段物理中断号,根据中断类型中断号的范围不同。SPI(0-987)PPI(0-15)
- 第三个字段代表的中断触发方式
- interrupt-controller: 描述此字段是一个中断控制器
- interrupt-parent: 代表此中断控制器是否是级联的,如果没有此字段,则跟随父字段
- reg描述的是中断控制器中的涉及的寄存器
- 0x666688888 代表的是Distributor的基址寄存器,GICD
- 0x6666e8888 代表的是Redistributor的基址寄存器,GICR
了解了DTS,我们则继续看下对应GICv3的驱动
IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
大家可以把这个宏展开开下,展开之后如下,展开之后会有一个__irqchip_of_table的段
static const struct of_device_id __of_table_gic_v3 __used __section(__irqchip_of_table) = { .compatible = "arm,gic-v3", .data = gic_of_init }
这个段会在链接脚本中有详细的描述,当开机的时候,会去从__irqchip_of_table去读取此,然后做比较
void __init init_IRQ(void) { init_irq_stacks(); irqchip_init(); if (!handle_arch_irq) panic("No interrupt controller found."); } void __init irqchip_init(void) { of_irq_init(__irqchip_of_table); acpi_probe_device_table(irqchip); }
最终在of_irq_init函数中根据dts来匹配到正确的中断控制器。匹配到正确的中断控制器后,会调用上面的data回调函数就是gic_of_init,也就是对中断控制器做初始化操作
for_each_matching_node_and_match(np, matches, &match) { if (!of_property_read_bool(np, "interrupt-controller") || //如果不是中断控制器,则跳过 !of_device_is_available(np)) continue; /* * Here, we allocate and populate an of_intc_desc with the node * pointer, interrupt-parent device_node etc. */ desc = kzalloc(sizeof(*desc), GFP_KERNEL); if (WARN_ON(!desc)) { of_node_put(np); goto err; } desc->irq_init_cb = match->data; desc->dev = of_node_get(np); desc->interrupt_parent = of_irq_find_parent(np); if (desc->interrupt_parent == np) desc->interrupt_parent = NULL; list_add_tail(&desc->list, &intc_desc_list); }
- 找到存在interrupt-controller的字段
- 分配中断控制器描述符,设置中断控制器的irq_init_cb回调函数
list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) { int ret; if (desc->interrupt_parent != parent) continue; list_del(&desc->list); of_node_set_flag(desc->dev, OF_POPULATED); pr_debug("of_irq_init: init %pOF (%p), parent %pn", desc->dev, desc->dev, desc->interrupt_parent); ret = desc->irq_init_cb(desc->dev, //回调设置的中断控制器的初始化处理函数 desc->interrupt_parent);
这样一来就调用到gic_of_init函数了
static int __init gic_of_init(struct device_node *node, struct device_node *parent) { void __iomem *dist_base; struct redist_region *rdist_regs; u64 redist_stride; u32 nr_redist_regions; int err, i; dist_base = of_iomap(node, 0); err = gic_validate_dist_version(dist_base); if (err) { pr_err("%pOF: no distributor detected, giving upn", node); goto out_unmap_dist; } if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions)) nr_redist_regions = 1; rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs), GFP_KERNEL); for (i = 0; i < nr_redist_regions; i++) { struct resource res; int ret; ret = of_address_to_resource(node, 1 + i, &res); rdist_regs[i].redist_base = of_iomap(node, 1 + i); if (ret || !rdist_regs[i].redist_base) { pr_err("%pOF: couldn't map region %dn", node, i); err = -ENODEV; goto out_unmap_rdist; } rdist_regs[i].phys_base = res.start; } if (of_property_read_u64(node, "redistributor-stride", &redist_stride)) redist_stride = 0; err = gic_init_bases(dist_base, rdist_regs, nr_redist_regions, redist_stride, &node->fwnode); return 0; }
- of_iomap获取终端控制器distributor的基址
- gic_validate_dist_version根据基址判断当前是v3还是v4版本
- 读取redisttibutor的属性,获取对应寄存器的基址
- 最终会调用到gic_init_bases函数中做相应的初始化
static int __init gic_init_bases(void __iomem *dist_base, struct redist_region *rdist_regs, u32 nr_redist_regions, u64 redist_stride, struct fwnode_handle *handle) { u32 typer; int gic_irqs; int err; if (!is_hyp_mode_available()) static_branch_disable(&supports_deactivate_key); if (static_branch_likely(&supports_deactivate_key)) pr_info("GIC: Using split EOI/Deactivate moden"); gic_data.fwnode = handle; gic_data.dist_base = dist_base; gic_data.redist_regions = rdist_regs; gic_data.nr_redist_regions = nr_redist_regions; gic_data.redist_stride = redist_stride; /* * Find out how many interrupts are supported. * The GIC only supports up to 1020 interrupt sources (SGI+PPI+SPI) */ typer = readl_relaxed(gic_data.dist_base + GICD_TYPER); gic_data.rdists.gicd_typer = typer; gic_irqs = GICD_TYPER_IRQS(typer); if (gic_irqs > 1020) gic_irqs = 1020; gic_data.irq_nr = gic_irqs; gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops, &gic_data); irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED); gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist)); gic_data.rdists.has_vlpis = true; gic_data.rdists.has_direct_lpi = true; if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) { err = -ENOMEM; goto out_free; } gic_data.has_rss = !!(typer & GICD_TYPER_RSS); pr_info("Distributor has %sRange Selector supportn", gic_data.has_rss ? "" : "no "); if (typer & GICD_TYPER_MBIS) { err = mbi_init(handle, gic_data.domain); if (err) pr_err("Failed to initialize MBIsn"); } set_handle_irq(gic_handle_irq); gic_update_vlpi_properties(); if (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) && gic_dist_supports_lpis() && !IS_ENABLED(CONFIG_ARM_GIC_V3_ACL)) its_init(handle, &gic_data.rdists, gic_data.domain); gic_smp_init(); gic_dist_init(); gic_cpu_init(); gic_cpu_pm_init(); return 0; out_free: if (gic_data.domain) irq_domain_remove(gic_data.domain); free_percpu(gic_data.rdists.rdist); return err; }
- is_hyp_mode_available判断当前是否在Hyp虚拟化模式
- 根据参数初始化gic_data结构
- 通过读取GICD_TYPER寄存器获取到当前GIC支持的最大中断数量。如果中断数量超过1020则赋值最大值为1020.
- irq_domain_create_tree通过此函数来创建一个irq domain,irq doamin就是对中断的区域的管理,用于级联
- set_handle_irq(gic_handle_irq);重点中的重点,用于设置中断处理的回调函数,当中断处理时,首先会调用此函数的
- gic_smp_init 软中断的初始化,设置软中断的回调
- gic_dist_init distributor的初始化
- gic_cpu_init cpu interface的初始化
- gic_cpu_pm_init power相关的初始化
设置中断回调函数
int __init set_handle_irq(void (*handle_irq)(struct pt_regs *)) { if (handle_arch_irq) return -EBUSY; handle_arch_irq = handle_irq; return 0; }
handle_arch_irq会在汇编中调用的,在中断处理流程中详细说明
static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs) { u32 irqnr; do { irqnr = gic_read_iar(); if (likely(irqnr > 15 && irqnr < 1020) || irqnr >= 8192) { int err; uncached_logk(LOGK_IRQ, (void *)(uintptr_t)irqnr); if (static_branch_likely(&supports_deactivate_key)) gic_write_eoir(irqnr); else isb(); err = handle_domain_irq(gic_data.domain, irqnr, regs); if (err) { WARN_ONCE(true, "Unexpected interrupt received!n"); if (static_branch_likely(&supports_deactivate_key)) { if (irqnr < 8192) gic_write_dir(irqnr); } else { gic_write_eoir(irqnr); } } continue; } if (irqnr < 16) { uncached_logk(LOGK_IRQ, (void *)(uintptr_t)irqnr); gic_write_eoir(irqnr); if (static_branch_likely(&supports_deactivate_key)) gic_write_dir(irqnr); #ifdef CONFIG_SMP /* * Unlike GICv2, we don't need an smp_rmb() here. * The control dependency from gic_read_iar to * the ISB in gic_write_eoir is enough to ensure * that any shared data read by handle_IPI will * be read after the ACK. */ handle_IPI(irqnr, regs); #else WARN_ONCE(true, "Unexpected SGI received!n"); #endif continue; } } while (irqnr != ICC_IAR1_EL1_SPURIOUS); }
- 根据上一篇GIC-500的文章最后一小节中描述,先会去读IAR寄存器确定中断号的,软件上是通过gic_read_iar实现的
- 得到中断号会去判断当前是哪种中断类型,当中断号大于15小于1020的话,则此中断属于PPI或者SPI
- 结合会根据irq domain去处理对应的中断handle_domain_irq(gic_data.domain, irqnr, regs);
- 如果中断号小于16,则此中断号是IPI中断,是core之间用于通信的中断,则会调用handle_IPI(irqnr, regs);去处理对应的中断
而linux中用一个irq chip结构体来描述一个中断控制器,irq_chip称为中断控制器描述符
static struct irq_chip gic_chip = { .name = "GICv3", .irq_mask = gic_mask_irq, .irq_unmask = gic_unmask_irq, .irq_eoi = gic_eoi_irq, .irq_set_type = gic_set_type, .irq_set_affinity = gic_set_affinity, .irq_get_irqchip_state = gic_irq_get_irqchip_state, .irq_set_irqchip_state = gic_irq_set_irqchip_state, .flags = IRQCHIP_SET_TYPE_MASKED | IRQCHIP_SKIP_SET_WAKE | IRQCHIP_MASK_ON_SUSPEND, };
- irq_chip结构相对于是中断控制器在软件上的抽象
- name,中断控制器的名字,可以在/cat /proc/interrupter中查看
- irq_mask: 用于屏蔽中断源
- irq_unmask: 用于取消屏蔽中断源
- irq_eoi: end of interrupter, 用于表明此中断处理完毕
- irq_set_type:设置中断的触发类型
- irq_set_affinity: 设置中断的亲合性
- 等等
当然了irq_chip提供了很多回调函数,大家可以去看irq_chip的定义
struct irq_chip { struct device *parent_device; const char *name; unsigned int (*irq_startup)(struct irq_data *data); void (*irq_shutdown)(struct irq_data *data); void (*irq_enable)(struct irq_data *data); void (*irq_disable)(struct irq_data *data); void (*irq_ack)(struct irq_data *data); void (*irq_mask)(struct irq_data *data); void (*irq_mask_ack)(struct irq_data *data); void (*irq_unmask)(struct irq_data *data); void (*irq_eoi)(struct irq_data *data); int (*irq_set_affinity)(struct irq_data *data, const struct cpumask *dest, bool force); int (*irq_retrigger)(struct irq_data *data); int (*irq_set_type)(struct irq_data *data, unsigned int flow_type); int (*irq_set_wake)(struct irq_data *data, unsigned int on); void (*irq_bus_lock)(struct irq_data *data); void (*irq_bus_sync_unlock)(struct irq_data *data); void (*irq_cpu_online)(struct irq_data *data); void (*irq_cpu_offline)(struct irq_data *data); void (*irq_suspend)(struct irq_data *data); void (*irq_resume)(struct irq_data *data); void (*irq_pm_shutdown)(struct irq_data *data); void (*irq_calc_mask)(struct irq_data *data); void (*irq_print_chip)(struct irq_data *data, struct seq_file *p); int (*irq_request_resources)(struct irq_data *data); void (*irq_release_resources)(struct irq_data *data); void (*irq_compose_msi_msg)(struct irq_data *data, struct msi_msg *msg); void (*irq_write_msi_msg)(struct irq_data *data, struct msi_msg *msg); int (*irq_get_irqchip_state)(struct irq_data *data, enum irqchip_irq_state which, bool *state); int (*irq_set_irqchip_state)(struct irq_data *data, enum irqchip_irq_state which, bool state); int (*irq_set_vcpu_affinity)(struct irq_data *data, void *vcpu_info); void (*ipi_send_single)(struct irq_data *data, unsigned int cpu); void (*ipi_send_mask)(struct irq_data *data, const struct cpumask *dest); unsigned long flags; };


