­

(原)Non-local Neural Networks

  • 2020 年 3 月 29 日
  • 筆記

转载请注明出处:

https://www.cnblogs.com/darkknightzh/p/12592351.html

论文:

https://arxiv.org/abs/1711.07971

第三方pytorch代码:

https://github.com/AlexHex7/Non-local_pytorch

1. non local操作

该论文定义了通用了non local操作:

${{mathbf{y}}_{i}}=frac{1}{C(mathbf{x})}sumlimits_{forall j}{f({{mathbf{x}}_{i}},{{mathbf{x}}_{j}})g({{mathbf{x}}_{j}})}$

其中i为需要计算响应的输出位置的索引,j为所有的位置。x为输入信号(图像,序列,视频等,通常为这些信号的特征),y为个x相同尺寸的输出信号。f为pairwise的函数,f计算当前i和所有j之间的关系,并得到一个标量。一元函数g计算输入信号在位置j的表征。(这段翻译起来怪怪的)。C(x)为归一化系数,用于归一化f和g的结果。

2. non local和其他操作的区别

① non local考虑到了所有的位置j。卷积操作仅考虑了当前位置的一个邻域(如核为3的一维卷积仅考虑了i-1<=j<=i+1);循环操作通常只考虑当前和上一个时间,j=i或j=i-1.

② non local根据不同位置的关系计算响应,fc使用学习到的权重。换言之,fc中,${{mathbf{x}}_{i}}$和${{mathbf{x}}_{j}}$之间不是函数关系,而non local中则是函数关系。

③ non local支持输入不同尺寸,并且保持输出和输入相同的尺寸;fc则需要输入和输出均为固定的尺寸,并且丢失了位置关系。

④ non local可以用在网络的早期部分,fc通常用在网络最后。

 

3. f和g的形式

3.1 g的形式

为简单起见,只考虑g为线性形式,$g({{mathbf{x}}_{j}})text{=}{{W}_{g}}{{mathbf{x}}_{j}}$,${{W}_{g}}$为需要学习的权重向量,在空域可以使用1*1conv实现,在空间时间域(如时间序列的图像)可以通过1*1*1的卷积实现。

3.2 f为gaussian

$f({{mathbf{x}}_{i}},{{mathbf{x}}_{j}})text{=}{{e}^{mathbf{x}_{i}^{T}{{mathbf{x}}_{j}}}}$

其中$mathbf{x}_{i}^{T}{{mathbf{x}}_{j}}$为点乘,因为点乘在深度学习平台中更易实现(欧式距离也可以)。此时归一化系数$C(mathbf{x})=sumnolimits_{forall j}{f({{mathbf{x}}_{i}},{{mathbf{x}}_{j}})}$

3.3 f为embedded Gaussian

$f({{mathbf{x}}_{i}},{{mathbf{x}}_{j}})text{=}{{e}^{theta {{({{mathbf{x}}_{i}})}^{T}}phi ({{mathbf{x}}_{j}})}}$

其中$theta ({{mathbf{x}}_{i}})text{=}{{W}_{theta }}{{mathbf{x}}_{i}}$,$phi ({{mathbf{x}}_{j}})text{=}{{W}_{phi }}{{mathbf{x}}_{j}}$,此时$C(mathbf{x})=sumnolimits_{forall j}{f({{mathbf{x}}_{i}},{{mathbf{x}}_{j}})}$

self attention模块和non local的关系:可以认为self attention为embedded Gaussian的特殊形式,如给定i,$frac{1}{C(mathbf{x})}f({{mathbf{x}}_{i}},{{mathbf{x}}_{j}})$沿着j维度变成了计算softmax。此时$mathbf{y}=softmax({{mathbf{x}}^{T}}W_{theta }^{T}{{W}_{phi }}mathbf{x})g(mathbf{x})$,即为self attention的形式。

3.4 点乘

f可以定义为点乘的相似度(此处使用embedded的形式):

$f({{mathbf{x}}_{i}},{{mathbf{x}}_{j}})text{=}theta {{({{mathbf{x}}_{i}})}^{T}}phi ({{mathbf{x}}_{j}})$

此时,归一化系数$C(mathbf{x})=N$,N为x中所有位置的数量,而不是f的sum,这样可以简化梯度的计算。

点乘和embedded Gaussian的区别是是否使用了作为激活函数的softmax。

3.5 Concatenation

$f({{mathbf{x}}_{i}},{{mathbf{x}}_{j}})text{=ReLU(w}_{f}^{T}[theta ({{mathbf{x}}_{i}}),phi ({{mathbf{x}}_{j}})]text{)}$

其中$[cdot cdot ]$代表concatenation,即拼接。${{w}_{f}}$为权重向量,用于将拼接后的向量映射到一个标量。$C(mathbf{x})=N$

4. Non local block

将之前公式的non local操作扩展成non local block,可以嵌入到目前的网络结构中,如下:

${{mathbf{z}}_{i}}={{W}_{z}}{{mathbf{y}}_{i}}+{{mathbf{x}}_{i}}$

其中${{mathbf{y}}_{i}}=frac{1}{C(mathbf{x})}sumlimits_{forall j}{f({{mathbf{x}}_{i}},{{mathbf{x}}_{j}})g({{mathbf{x}}_{j}})}$,$+{{mathbf{x}}_{i}}$代表残差连接。残差连接方便将non local block嵌入到之前与训练的模型中,避免打乱其初始行为(如将${{W}_{z}}$初始化为0)。

non local block如下图所示。3.2,3.3,3.4中的pairwise计算对应于下图中的矩阵乘法。在网络后面的特征图上,pairwise计算量比较小。

说明:

1. 若为图像,则使用1*1conv,且图中无T;若为视频,则使用1*1*1conv,且图中有T。

2. 图中softmax指对该矩阵每行计算softmax。

5. 降低计算量

5.1 降低x的通道数量

将${{W}_{g}}$,${{W}_{theta }}$,${{W}_{phi }}$降低为x的通道数量的一半,可以降低计算量。

5.2 对x下采样。

对x下采样,可以进一步降低计算量。

此时,1中的共识修改为${{mathbf{y}}_{i}}=frac{1}{C(mathbf{hat{x}})}sumlimits_{forall j}{f({{mathbf{x}}_{i}},{{{mathbf{hat{x}}}}_{j}})g({{{mathbf{hat{x}}}}_{j}})}$,其中$mathbf{hat{x}}$为对x进行下采样后的输入(如pooling)。这种方式可以降低pariwsie计算到原来的1/4,一方面不影响non local的行为,另一方面,使得计算更加稀疏。可以通过在上图中$phi $和$g$后面加一个max pooling来实现。

6. 代码:

6.1 embedded_gaussian

  1 class _NonLocalBlockND(nn.Module):    2     def __init__(self, in_channels, inter_channels=None, dimension=3, sub_sample=True, bn_layer=True):    3         """    4         :param in_channels:    5         :param inter_channels:    6         :param dimension:    7         :param sub_sample:    8         :param bn_layer:    9         """   10   11         super(_NonLocalBlockND, self).__init__()   12   13         assert dimension in [1, 2, 3]   14   15         self.dimension = dimension   16         self.sub_sample = sub_sample   17   18         self.in_channels = in_channels   19         self.inter_channels = inter_channels   20   21         if self.inter_channels is None:   22             self.inter_channels = in_channels // 2   23             if self.inter_channels == 0:   24                 self.inter_channels = 1   25   26         if dimension == 3:   27             conv_nd = nn.Conv3d   28             max_pool_layer = nn.MaxPool3d(kernel_size=(1, 2, 2))   29             bn = nn.BatchNorm3d   30         elif dimension == 2:   31             conv_nd = nn.Conv2d   32             max_pool_layer = nn.MaxPool2d(kernel_size=(2, 2))   33             bn = nn.BatchNorm2d   34         else:   35             conv_nd = nn.Conv1d   36             max_pool_layer = nn.MaxPool1d(kernel_size=(2))   37             bn = nn.BatchNorm1d   38   39         self.g = conv_nd(in_channels=self.in_channels, out_channels=self.inter_channels,   40                          kernel_size=1, stride=1, padding=0)    # g函数,1*1conv,用于降维   41   42         if bn_layer:   43             self.W = nn.Sequential(    # 1*1conv,用于图2中变换到原始维度   44                 conv_nd(in_channels=self.inter_channels, out_channels=self.in_channels,   45                         kernel_size=1, stride=1, padding=0),   46                 bn(self.in_channels)   47             )   48             nn.init.constant_(self.W[1].weight, 0)   49             nn.init.constant_(self.W[1].bias, 0)   50         else:   51             self.W = conv_nd(in_channels=self.inter_channels, out_channels=self.in_channels,   52                              kernel_size=1, stride=1, padding=0)   # 1*1conv,用于图2中变换到原始维度   53             nn.init.constant_(self.W.weight, 0)   54             nn.init.constant_(self.W.bias, 0)   55   56         self.theta = conv_nd(in_channels=self.in_channels, out_channels=self.inter_channels,   57                              kernel_size=1, stride=1, padding=0)   # θ函数,1*1conv,用于降维   58         self.phi = conv_nd(in_channels=self.in_channels, out_channels=self.inter_channels,   59                            kernel_size=1, stride=1, padding=0)    # φ函数,1*1conv,用于降维   60   61         if sub_sample:   62             self.g = nn.Sequential(self.g, max_pool_layer)   63             self.phi = nn.Sequential(self.phi, max_pool_layer)   64   65     def forward(self, x, return_nl_map=False):   66         """   67         :param x: (b, c, t, h, w)   68         :param return_nl_map: if True return z, nl_map, else only return z.   69         :return:   70         """   71         # 令x维度B*C*(K):一维时,x为B*C*(K1);二维时,x为B*C*(K1*K2);三维时,x为B*C*(K1*K2*K3)   72         batch_size = x.size(0)   # batchsize   73   74         g_x = self.g(x).view(batch_size, self.inter_channels, -1)   # 通过g函数,并reshape,得到B*inter_channels*(K)矩阵   75         g_x = g_x.permute(0, 2, 1)   # 得到B*(K)*inter_channels矩阵,和图2中一致   76   77         theta_x = self.theta(x).view(batch_size, self.inter_channels, -1)   # 通过θ函数,并reshape,得到B*inter_channels*(K)矩阵   78         theta_x = theta_x.permute(0, 2, 1)   # 得到B*(K)*inter_channels矩阵,和图2中一致   79         phi_x = self.phi(x).view(batch_size, self.inter_channels, -1)   # 通过φ函数,并reshape,得到B*inter_channels*(K)矩阵   80         f = torch.matmul(theta_x, phi_x)    # 得到B*(K)*(K)矩阵,和图2中一致   81         f_div_C = F.softmax(f, dim=-1)      # 通过softmax,对最后一维归一化,得到归一化的特征,即概率,B*(K)*(K)   82   83         y = torch.matmul(f_div_C, g_x)      # 得到B*(K)*inter_channels矩阵,和图2中一致   84         y = y.permute(0, 2, 1).contiguous() # 得到B*inter_channels*(K)矩阵,和图2中一致   85         y = y.view(batch_size, self.inter_channels, *x.size()[2:])  # 得到B*inter_channels*(K1或K1*K2或K1*K2*K3)矩阵,和图2中一致   86         W_y = self.W(y)  # 得到B*C*(K)矩阵,和图2中一致   87         z = W_y + x   # 特征图和non local的图相加,得到新的特征图,B*C*(K)   88   89         if return_nl_map:   90             return z, f_div_C   # 返回结果及归一化的特征   91         return z   92   93   94 class NONLocalBlock1D(_NonLocalBlockND):   95     def __init__(self, in_channels, inter_channels=None, sub_sample=True, bn_layer=True):   96         super(NONLocalBlock1D, self).__init__(in_channels,   97                                               inter_channels=inter_channels,   98                                               dimension=1, sub_sample=sub_sample,   99                                               bn_layer=bn_layer)  100  101  102 class NONLocalBlock2D(_NonLocalBlockND):  103     def __init__(self, in_channels, inter_channels=None, sub_sample=True, bn_layer=True):  104         super(NONLocalBlock2D, self).__init__(in_channels,  105                                               inter_channels=inter_channels,  106                                               dimension=2, sub_sample=sub_sample,  107                                               bn_layer=bn_layer,)  108  109  110 class NONLocalBlock3D(_NonLocalBlockND):  111     def __init__(self, in_channels, inter_channels=None, sub_sample=True, bn_layer=True):  112         super(NONLocalBlock3D, self).__init__(in_channels,  113                                               inter_channels=inter_channels,  114                                               dimension=3, sub_sample=sub_sample,  115                                               bn_layer=bn_layer,)  116  117  118 if __name__ == '__main__':  119     import torch  120  121     for (sub_sample_, bn_layer_) in [(True, True), (False, False), (True, False), (False, True)]:  122         img = torch.zeros(2, 3, 20)  123         net = NONLocalBlock1D(3, sub_sample=sub_sample_, bn_layer=bn_layer_)  124         out = net(img)  125         print(out.size())  126  127         img = torch.zeros(2, 3, 20, 20)  128         net = NONLocalBlock2D(3, sub_sample=sub_sample_, bn_layer=bn_layer_, store_last_batch_nl_map=True)  129         out = net(img)  130         print(out.size())  131  132         img = torch.randn(2, 3, 8, 20, 20)  133         net = NONLocalBlock3D(3, sub_sample=sub_sample_, bn_layer=bn_layer_, store_last_batch_nl_map=True)  134         out = net(img)  135         print(out.size())

View Code

6.2 embedded Gaussian和点乘的区别

点乘代码:

  1 class _NonLocalBlockND(nn.Module):    2     def __init__(self, in_channels, inter_channels=None, dimension=3, sub_sample=True, bn_layer=True):    3         super(_NonLocalBlockND, self).__init__()    4    5         assert dimension in [1, 2, 3]    6    7         self.dimension = dimension    8         self.sub_sample = sub_sample    9   10         self.in_channels = in_channels   11         self.inter_channels = inter_channels   12   13         if self.inter_channels is None:   14             self.inter_channels = in_channels // 2   15             if self.inter_channels == 0:   16                 self.inter_channels = 1   17   18         if dimension == 3:   19             conv_nd = nn.Conv3d   20             max_pool_layer = nn.MaxPool3d(kernel_size=(1, 2, 2))   21             bn = nn.BatchNorm3d   22         elif dimension == 2:   23             conv_nd = nn.Conv2d   24             max_pool_layer = nn.MaxPool2d(kernel_size=(2, 2))   25             bn = nn.BatchNorm2d   26         else:   27             conv_nd = nn.Conv1d   28             max_pool_layer = nn.MaxPool1d(kernel_size=(2))   29             bn = nn.BatchNorm1d   30   31         self.g = conv_nd(in_channels=self.in_channels, out_channels=self.inter_channels,   32                          kernel_size=1, stride=1, padding=0)   33   34         if bn_layer:   35             self.W = nn.Sequential(   36                 conv_nd(in_channels=self.inter_channels, out_channels=self.in_channels,   37                         kernel_size=1, stride=1, padding=0),   38                 bn(self.in_channels)   39             )   40             nn.init.constant_(self.W[1].weight, 0)   41             nn.init.constant_(self.W[1].bias, 0)   42         else:   43             self.W = conv_nd(in_channels=self.inter_channels, out_channels=self.in_channels,   44                              kernel_size=1, stride=1, padding=0)   45             nn.init.constant_(self.W.weight, 0)   46             nn.init.constant_(self.W.bias, 0)   47   48         self.theta = conv_nd(in_channels=self.in_channels, out_channels=self.inter_channels,   49                              kernel_size=1, stride=1, padding=0)   50   51         self.phi = conv_nd(in_channels=self.in_channels, out_channels=self.inter_channels,   52                            kernel_size=1, stride=1, padding=0)   53   54         if sub_sample:   55             self.g = nn.Sequential(self.g, max_pool_layer)   56             self.phi = nn.Sequential(self.phi, max_pool_layer)   57   58     def forward(self, x, return_nl_map=False):   59         """   60         :param x: (b, c, t, h, w)   61         :param return_nl_map: if True return z, nl_map, else only return z.   62         :return:   63         """   64         # 令x维度B*C*(K):一维时,x为B*C*(K1);二维时,x为B*C*(K1*K2);三维时,x为B*C*(K1*K2*K3)   65         batch_size = x.size(0)   66   67         g_x = self.g(x).view(batch_size, self.inter_channels, -1)    # 通过g函数,并reshape,得到B*inter_channels*(K)矩阵   68         g_x = g_x.permute(0, 2, 1)   # 得到B*(K)*inter_channels矩阵,和图2中一致   69   70         theta_x = self.theta(x).view(batch_size, self.inter_channels, -1)   # 通过θ函数,并reshape,得到B*inter_channels*(K)矩阵   71         theta_x = theta_x.permute(0, 2, 1)    # 得到B*(K)*inter_channels矩阵,和图2中一致   72         phi_x = self.phi(x).view(batch_size, self.inter_channels, -1)    # 通过φ函数,并reshape,得到B*inter_channels*(K)矩阵   73         f = torch.matmul(theta_x, phi_x)     # 得到B*(K)*(K)矩阵,和图2中一致   74         N = f.size(-1)   # 最后一维的维度   75         f_div_C = f / N  # 对最后一维归一化   76   77         y = torch.matmul(f_div_C, g_x)    # 得到B*(K)*inter_channels矩阵,和图2中一致   78         y = y.permute(0, 2, 1).contiguous()   # 得到B*inter_channels*(K)矩阵,和图2中一致   79         y = y.view(batch_size, self.inter_channels, *x.size()[2:])   # 得到B*inter_channels*(K1或K1*K2或K1*K2*K3)矩阵,和图2中一致   80         W_y = self.W(y) # 得到B*C*(K)矩阵,和图2中一致   81         z = W_y + x   # 特征图和non local的图相加,得到新的特征图,B*C*(K)   82   83         if return_nl_map:   84             return z, f_div_C  # 返回结果及归一化的特征   85         return z   86   87   88 class NONLocalBlock1D(_NonLocalBlockND):   89     def __init__(self, in_channels, inter_channels=None, sub_sample=True, bn_layer=True):   90         super(NONLocalBlock1D, self).__init__(in_channels,   91                                               inter_channels=inter_channels,   92                                               dimension=1, sub_sample=sub_sample,   93                                               bn_layer=bn_layer)   94   95   96 class NONLocalBlock2D(_NonLocalBlockND):   97     def __init__(self, in_channels, inter_channels=None, sub_sample=True, bn_layer=True):   98         super(NONLocalBlock2D, self).__init__(in_channels,   99                                               inter_channels=inter_channels,  100                                               dimension=2, sub_sample=sub_sample,  101                                               bn_layer=bn_layer)  102  103  104 class NONLocalBlock3D(_NonLocalBlockND):  105     def __init__(self, in_channels, inter_channels=None, sub_sample=True, bn_layer=True):  106         super(NONLocalBlock3D, self).__init__(in_channels,  107                                               inter_channels=inter_channels,  108                                               dimension=3, sub_sample=sub_sample,  109                                               bn_layer=bn_layer)  110  111  112 if __name__ == '__main__':  113     import torch  114  115     for (sub_sample_, bn_layer_) in [(True, True), (False, False), (True, False), (False, True)]:  116         img = torch.zeros(2, 3, 20)  117         net = NONLocalBlock1D(3, sub_sample=sub_sample_, bn_layer=bn_layer_)  118         out = net(img)  119         print(out.size())  120  121         img = torch.zeros(2, 3, 20, 20)  122         net = NONLocalBlock2D(3, sub_sample=sub_sample_, bn_layer=bn_layer_)  123         out = net(img)  124         print(out.size())  125  126         img = torch.randn(2, 3, 8, 20, 20)  127         net = NONLocalBlock3D(3, sub_sample=sub_sample_, bn_layer=bn_layer_)  128         out = net(img)  129         print(out.size())

View Code

左侧为embedded Gaussian,右侧为点乘

 

6.3 embedded Gaussian和Gaussian的区别

左侧为embedded Gaussian,右侧为Gaussian

初始化:

forward:

6.4 embedded Gaussian和Concatenation的区别

Concatenation代码:

  1 class _NonLocalBlockND(nn.Module):    2     def __init__(self, in_channels, inter_channels=None, dimension=3, sub_sample=True, bn_layer=True):    3         super(_NonLocalBlockND, self).__init__()    4    5         assert dimension in [1, 2, 3]    6    7         self.dimension = dimension    8         self.sub_sample = sub_sample    9   10         self.in_channels = in_channels   11         self.inter_channels = inter_channels   12   13         if self.inter_channels is None:   14             self.inter_channels = in_channels // 2   15             if self.inter_channels == 0:   16                 self.inter_channels = 1   17   18         if dimension == 3:   19             conv_nd = nn.Conv3d   20             max_pool_layer = nn.MaxPool3d(kernel_size=(1, 2, 2))   21             bn = nn.BatchNorm3d   22         elif dimension == 2:   23             conv_nd = nn.Conv2d   24             max_pool_layer = nn.MaxPool2d(kernel_size=(2, 2))   25             bn = nn.BatchNorm2d   26         else:   27             conv_nd = nn.Conv1d   28             max_pool_layer = nn.MaxPool1d(kernel_size=(2))   29             bn = nn.BatchNorm1d   30   31         self.g = conv_nd(in_channels=self.in_channels, out_channels=self.inter_channels,   32                          kernel_size=1, stride=1, padding=0)   33   34         if bn_layer:   35             self.W = nn.Sequential(   36                 conv_nd(in_channels=self.inter_channels, out_channels=self.in_channels,   37                         kernel_size=1, stride=1, padding=0),   38                 bn(self.in_channels)   39             )   40             nn.init.constant_(self.W[1].weight, 0)   41             nn.init.constant_(self.W[1].bias, 0)   42         else:   43             self.W = conv_nd(in_channels=self.inter_channels, out_channels=self.in_channels,   44                              kernel_size=1, stride=1, padding=0)   45             nn.init.constant_(self.W.weight, 0)   46             nn.init.constant_(self.W.bias, 0)   47   48         self.theta = conv_nd(in_channels=self.in_channels, out_channels=self.inter_channels,   49                              kernel_size=1, stride=1, padding=0)   50   51         self.phi = conv_nd(in_channels=self.in_channels, out_channels=self.inter_channels,   52                            kernel_size=1, stride=1, padding=0)   53   54         self.concat_project = nn.Sequential(   # 将concat后的特征降维到1维的矩阵   55             nn.Conv2d(self.inter_channels * 2, 1, 1, 1, 0, bias=False),   56             nn.ReLU()   57         )   58   59         if sub_sample:   60             self.g = nn.Sequential(self.g, max_pool_layer)   61             self.phi = nn.Sequential(self.phi, max_pool_layer)   62   63     def forward(self, x, return_nl_map=False):   64         '''   65         :param x: (b, c, t, h, w)   66         :param return_nl_map: if True return z, nl_map, else only return z.   67         :return:   68         '''   69         # 令x维度B*C*(K):一维时,x为B*C*(K1);二维时,x为B*C*(K1*K2);三维时,x为B*C*(K1*K2*K3)   70         batch_size = x.size(0)   71   72         g_x = self.g(x).view(batch_size, self.inter_channels, -1)   # 通过g函数,并reshape,得到B*inter_channels*(K)矩阵   73         g_x = g_x.permute(0, 2, 1)  # 得到B*(K)*inter_channels矩阵,和图2中一致   74   75         # (b, c, N, 1)   76         theta_x = self.theta(x).view(batch_size, self.inter_channels, -1, 1)  # 通过θ函数,并reshape,得到B*inter_channels*(K)*1矩阵   77         # (b, c, 1, N)   78         phi_x = self.phi(x).view(batch_size, self.inter_channels, 1, -1) # 通过φ函数,并reshape,得到B*inter_channels*1*(K)矩阵   79   80         h = theta_x.size(2)  # (K)   81         w = phi_x.size(3)  # (K)   82         theta_x = theta_x.repeat(1, 1, 1, w)  # B*inter_channels*(K)*(K)   83         phi_x = phi_x.repeat(1, 1, h, 1)     # B*inter_channels*(K)*(K)   84   85         concat_feature = torch.cat([theta_x, phi_x], dim=1)  # B*(2*inter_channels)*(K)*(K)   86         f = self.concat_project(concat_feature)    # B*1*(K)*(K)   87         b, _, h, w = f.size()  # B,_,(K),(K)   88         f = f.view(b, h, w)   # B*(K)*(K)   89   90         N = f.size(-1)  # (K)   91         f_div_C = f / N   # 最后一维归一化,B*(K)*(K)   92   93         y = torch.matmul(f_div_C, g_x)    # 得到B*(K)*inter_channels矩阵,和图2中一致   94         y = y.permute(0, 2, 1).contiguous()# 得到B*inter_channels*(K)矩阵,和图2中一致   95         y = y.view(batch_size, self.inter_channels, *x.size()[2:])  # 得到B*inter_channels*(K1或K1*K2或K1*K2*K3)矩阵,和图2中一致   96         W_y = self.W(y)  # 得到B*C*(K)矩阵,和图2中一致   97         z = W_y + x   # 特征图和non local的图相加,得到新的特征图,B*C*(K)   98   99         if return_nl_map:  100             return z, f_div_C    # 返回结果及归一化的特征  101         return z  102  103  104 class NONLocalBlock1D(_NonLocalBlockND):  105     def __init__(self, in_channels, inter_channels=None, sub_sample=True, bn_layer=True):  106         super(NONLocalBlock1D, self).__init__(in_channels,  107                                               inter_channels=inter_channels,  108                                               dimension=1, sub_sample=sub_sample,  109                                               bn_layer=bn_layer)  110  111  112 class NONLocalBlock2D(_NonLocalBlockND):  113     def __init__(self, in_channels, inter_channels=None, sub_sample=True, bn_layer=True):  114         super(NONLocalBlock2D, self).__init__(in_channels,  115                                               inter_channels=inter_channels,  116                                               dimension=2, sub_sample=sub_sample,  117                                               bn_layer=bn_layer)  118  119  120 class NONLocalBlock3D(_NonLocalBlockND):  121     def __init__(self, in_channels, inter_channels=None, sub_sample=True, bn_layer=True,):  122         super(NONLocalBlock3D, self).__init__(in_channels,  123                                               inter_channels=inter_channels,  124                                               dimension=3, sub_sample=sub_sample,  125                                               bn_layer=bn_layer)  126  127  128 if __name__ == '__main__':  129     import torch  130  131     for (sub_sample_, bn_layer_) in [(True, True), (False, False), (True, False), (False, True)]:  132         img = torch.zeros(2, 3, 20)  133         net = NONLocalBlock1D(3, sub_sample=sub_sample_, bn_layer=bn_layer_)  134         out = net(img)  135         print(out.size())  136  137         img = torch.zeros(2, 3, 20, 20)  138         net = NONLocalBlock2D(3, sub_sample=sub_sample_, bn_layer=bn_layer_)  139         out = net(img)  140         print(out.size())  141  142         img = torch.randn(2, 3, 8, 20, 20)  143         net = NONLocalBlock3D(3, sub_sample=sub_sample_, bn_layer=bn_layer_)  144         out = net(img)  145         print(out.size())

View Code

左侧为embedded Gaussian,右侧为Concatenation

初始化:

forward: