Tensorflow边框检测入门【Bouding Box Regression 】
- 2019 年 10 月 4 日
- 筆記
要学习目标检测算法吗?任何一个ML学习者都希望能够给图像中的目标物体圈个漂亮的框框,在这篇文章中我们将学习目标检测中的一个基本概念:边框回归/Bounding Box Regression。边框回归并不复杂,但是即使像YOLO这样顶尖的目标检测器也使用了这一技术!
我们将使用Tensorflow的Keras API实现一个边框回归模型。现在开始吧!如果你可以访问Google Colab的话,可以访问这里。
1、准备数据集
我们将使用Kaggle.com上的这个图像定位数据集,它包含了3类(黄瓜、茄子和蘑菇)共373个已经标注了目标边框的图像文件。我们的目标是解析图像并进行归一化处理,同时从XML格式的标注文件中解析得到目标物体包围框的4个顶点的坐标:

如果你希望创建自己的标注数据集也没有问题!你可以使用LabelImage。利用LabelImage你可以快速标注目标物体的包围边框,然后保存为PASCAL-VOC格式:

2、数据处理
首先我们需要处理一下图像。使用glob
包,我们可以列出后缀为jpg的文件,逐个处理:
input_dim = 228 from PIL import Image , ImageDraw import os import glob images = [] image_paths = glob.glob( 'training_images/*.jpg' ) for imagefile in image_paths: image = Image.open( imagefile ).resize( ( input_dim , input_dim )) image = np.asarray( image ) / 255.0 images.append( image )
接下来我们需要处理XML标注。标注文件的格式为PASCAL-VOC。我们使用xmltodict
包将XML文件转换为Python的字典对象:
import xmltodict import os bboxes = [] classes_raw = [] annotations_paths = glob.glob( 'training_images/*.xml' ) for xmlfile in annotations_paths: x = xmltodict.parse( open( xmlfile , 'rb' ) ) bndbox = x[ 'annotation' ][ 'object' ][ 'bndbox' ] bndbox = np.array([ int(bndbox[ 'xmin' ]) , int(bndbox[ 'ymin' ]) , int(bndbox[ 'xmax' ]) , int(bndbox[ 'ymax' ]) ]) bndbox2 = [ None ] * 4 bndbox2[0] = bndbox[0] bndbox2[1] = bndbox[1] bndbox2[2] = bndbox[2] bndbox2[3] = bndbox[3] bndbox2 = np.array( bndbox2 ) / input_dim bboxes.append( bndbox2 ) classes_raw.append( x[ 'annotation' ][ 'object' ][ 'name' ] )
现在我们准备训练集和测试集:
from sklearn.preprocessing import LabelBinarizer from sklearn.model_selection import train_test_split boxes = np.array( bboxes ) encoder = LabelBinarizer() classes_onehot = encoder.fit_transform( classes_raw ) Y = np.concatenate( [ boxes , classes_onehot ] , axis=1 ) X = np.array( images ) x_train, x_test, y_train, y_test = train_test_split( X, Y, test_size=0.1 )
3、创建Keras模型
我们首先为模型定义一个损失函数和一个衡量指标。损失函数同时使用了平方差(MSE:Mean Squared Error)和交并比(IoU:Intersection over Union),指标则用来衡量模型的准确性同时输出IoU得分:

IoU计算两个边框的交集与并集的比率:

Python实现代码如下:
input_shape = ( input_dim , input_dim , 3 ) dropout_rate = 0.5 alpha = 0.2 def calculate_iou( target_boxes , pred_boxes ): xA = K.maximum( target_boxes[ ... , 0], pred_boxes[ ... , 0] ) yA = K.maximum( target_boxes[ ... , 1], pred_boxes[ ... , 1] ) xB = K.minimum( target_boxes[ ... , 2], pred_boxes[ ... , 2] ) yB = K.minimum( target_boxes[ ... , 3], pred_boxes[ ... , 3] ) interArea = K.maximum( 0.0 , xB - xA ) * K.maximum( 0.0 , yB - yA ) boxAArea = (target_boxes[ ... , 2] - target_boxes[ ... , 0]) * (target_boxes[ ... , 3] - target_boxes[ ... , 1]) boxBArea = (pred_boxes[ ... , 2] - pred_boxes[ ... , 0]) * (pred_boxes[ ... , 3] - pred_boxes[ ... , 1]) iou = interArea / ( boxAArea + boxBArea - interArea ) return iou def custom_loss( y_true , y_pred ): mse = tf.losses.mean_squared_error( y_true , y_pred ) iou = calculate_iou( y_true , y_pred ) return mse + ( 1 - iou ) def iou_metric( y_true , y_pred ): return calculate_iou( y_true , y_pred )
接下来我们创建CNN模型。我们堆叠几个Conv2D层并拉平其输出,然后送入后边的全连接层。为了避免过拟合,我们在全连接层使用Dropout,并使用LeakyReLU激活层:
num_classes = 3 pred_vector_length = 4 + num_classes model_layers = [ keras.layers.Conv2D(16, kernel_size=(3, 3), strides=1, input_shape=input_shape), keras.layers.LeakyReLU( alpha=alpha ) , keras.layers.Conv2D(16, kernel_size=(3, 3), strides=1 ), keras.layers.LeakyReLU( alpha=alpha ) , keras.layers.MaxPooling2D( pool_size=( 2 , 2 ) ), keras.layers.Conv2D(32, kernel_size=(3, 3), strides=1), keras.layers.LeakyReLU( alpha=alpha ) , keras.layers.Conv2D(32, kernel_size=(3, 3), strides=1), keras.layers.LeakyReLU( alpha=alpha ) , keras.layers.MaxPooling2D( pool_size=( 2 , 2 ) ), keras.layers.Conv2D(64, kernel_size=(3, 3), strides=1), keras.layers.LeakyReLU( alpha=alpha ) , keras.layers.Conv2D(64, kernel_size=(3, 3), strides=1), keras.layers.LeakyReLU( alpha=alpha ) , keras.layers.MaxPooling2D( pool_size=( 2 , 2 ) ), keras.layers.Conv2D(128, kernel_size=(3, 3), strides=1), keras.layers.LeakyReLU( alpha=alpha ) , keras.layers.Conv2D(128, kernel_size=(3, 3), strides=1), keras.layers.LeakyReLU( alpha=alpha ) , keras.layers.MaxPooling2D( pool_size=( 2 , 2 ) ), keras.layers.Conv2D(256, kernel_size=(3, 3), strides=1), keras.layers.LeakyReLU( alpha=alpha ) , keras.layers.Conv2D(256, kernel_size=(3, 3), strides=1), keras.layers.LeakyReLU( alpha=alpha ) , keras.layers.MaxPooling2D( pool_size=( 2 , 2 ) ), keras.layers.Flatten() , keras.layers.Dense( 1240 ) , keras.layers.LeakyReLU( alpha=alpha ) , keras.layers.Dense( 640 ) , keras.layers.LeakyReLU( alpha=alpha ) , keras.layers.Dense( 480 ) , keras.layers.LeakyReLU( alpha=alpha ) , keras.layers.Dense( 120 ) , keras.layers.LeakyReLU( alpha=alpha ) , keras.layers.Dense( 62 ) , keras.layers.LeakyReLU( alpha=alpha ) , keras.layers.Dense( pred_vector_length ), keras.layers.LeakyReLU( alpha=alpha ) , ] model = keras.Sequential( model_layers ) model.compile( optimizer=keras.optimizers.Adam( lr=0.0001 ), loss=custom_loss, metrics=[ iou_metric ] )
4、训练模型
现在可以开始训练了:
model.fit( x_train , y_train , validation_data=( x_test , y_test ), epochs=100 , batch_size=3 )model.save( 'model.h5')
5、在图像上绘制边框
现在我们的模型已经训练好了,可以用它来检测一些测试图像并绘制检测出的对象的边框,然后把结果图像保存下来。
!mkdir -v inference_images boxes = model.predict( x_test ) for i in range( boxes.shape[0] ): b = boxes[ i , 0 : 4 ] * input_dim img = x_test[i] * 255 source_img = Image.fromarray( img.astype( np.uint8 ) , 'RGB' ) draw = ImageDraw.Draw( source_img ) draw.rectangle( b , outline="black" ) source_img.save( 'inference_images/image_{}.png'.format( i + 1 ) , 'png' )
下面是检测结果图示例:

要决定测试集上的IOU得分,同时计算分类准确率,我们使用如下的代码:
xA = np.maximum( target_boxes[ ... , 0], pred_boxes[ ... , 0] ) yA = np.maximum( target_boxes[ ... , 1], pred_boxes[ ... , 1] ) xB = np.minimum( target_boxes[ ... , 2], pred_boxes[ ... , 2] ) yB = np.minimum( target_boxes[ ... , 3], pred_boxes[ ... , 3] ) interArea = np.maximum(0.0, xB - xA ) * np.maximum(0.0, yB - yA ) boxAArea = (target_boxes[ ... , 2] - target_boxes[ ... , 0]) * (target_boxes[ ... , 3] - target_boxes[ ... , 1]) boxBArea = (pred_boxes[ ... , 2] - pred_boxes[ ... , 0]) * (pred_boxes[ ... , 3] - pred_boxes[ ... , 1]) iou = interArea / ( boxAArea + boxBArea - interArea ) return iou def class_accuracy( target_classes , pred_classes ): target_classes = np.argmax( target_classes , axis=1 ) pred_classes = np.argmax( pred_classes , axis=1 ) return ( target_classes == pred_classes ).mean() target_boxes = y_test * input_dim pred = model.predict( x_test ) pred_boxes = pred[ ... , 0 : 4 ] * input_dim pred_classes = pred[ ... , 4 : ] iou_scores = calculate_avg_iou( target_boxes , pred_boxes ) print( 'Mean IOU score {}'.format( iou_scores.mean() ) ) print( 'Class Accuracy is {} %'.format( class_accuracy( y_test[ ... , 4 : ] , pred_classes ) * 100 ))
原文链接:Tensorflow目标检测之边框回归入门 — 汇智网