­

跨越因果层次的概率推理(CS LO)

  • 2020 年 1 月 14 日
  • 筆記

我们建议将关联、介入和反事实的三层因果层次正式化,作为一系列概率逻辑语言。我们的语言具有严格的表达能力,第一种语言能够表达定量的概率推理——包括条件独立和贝叶斯推理——第二种语言能够编码因果关系的演算推理,第三种语言能够表达任意反事实查询的演算推理。给出了结构因果模型和概率程序上相应的完备的有限公理,并证明了在多项式空间上,每种语言的可满足性和有效性是可判定的。

原文题目:Probabilistic Reasoning across the Causal Hierarchy

原文:We propose a formalization of the three-tier causal hierarchy of association, intervention, and counterfactuals as a series of probabilistic logical languages. Our languages are of strictly increasing expressivity, the first capable of expressing quantitative probabilistic reasoning—including conditional independence and Bayesian inference—the second encoding do-calculus reasoning for causal effects, and the third capturing a fully expressive do-calculus for arbitrary counterfactual queries. We give a corresponding series of finitary axiomatizations complete over both structural causal models and probabilistic programs, and show that satisfiability and validity for each language are decidable in polynomial space.

原文作者:Duligur Ibeling, Thomas Icard

原文地址:https://arxiv.org/abs/2001.02889