Linux-3.14.12内存管理笔记【伙伴管理算法(4)】

  • 2019 年 12 月 20 日
  • 筆記

此处承接前面未深入分析的页面释放部分,主要详细分析伙伴管理算法中页面释放的实现。页面释放的函数入口是__free_page(),其实则是一个宏定义。

具体实现:

【file:/include/linux/gfp.h】  #define __free_page(page) __free_pages((page), 0)

而__free_pages()的实现:

【file:/mm/page_alloc.c】  void __free_pages(struct page *page, unsigned int order)  {      if (put_page_testzero(page)) {          if (order == 0)              free_hot_cold_page(page, 0);          else              __free_pages_ok(page, order);      }  }

其中put_page_testzero()是对page结构的_count引用计数做原子减及测试,用于检查内存页面是否仍被使用,如果不再使用,则进行释放。其中order表示页面数量,如果释放的是单页,则会调用free_hot_cold_page()将页面释放至per-cpu page缓存中,而不是伙伴管理算法;真正的释放至伙伴管理算法的是__free_pages_ok(),同时也是用于多个页面释放的情况。

此处接着则由free_hot_cold_page()开始分析:

【file:/mm/page_alloc.c】  /*   * Free a 0-order page   * cold == 1 ? free a cold page : free a hot page   */  void free_hot_cold_page(struct page *page, int cold)  {      struct zone *zone = page_zone(page);      struct per_cpu_pages *pcp;      unsigned long flags;      int migratetype;        if (!free_pages_prepare(page, 0))          return;        migratetype = get_pageblock_migratetype(page);      set_freepage_migratetype(page, migratetype);      local_irq_save(flags);      __count_vm_event(PGFREE);        /*       * We only track unmovable, reclaimable and movable on pcp lists.       * Free ISOLATE pages back to the allocator because they are being       * offlined but treat RESERVE as movable pages so we can get those       * areas back if necessary. Otherwise, we may have to free       * excessively into the page allocator       */      if (migratetype >= MIGRATE_PCPTYPES) {          if (unlikely(is_migrate_isolate(migratetype))) {              free_one_page(zone, page, 0, migratetype);              goto out;          }          migratetype = MIGRATE_MOVABLE;      }        pcp = &this_cpu_ptr(zone->pageset)->pcp;      if (cold)          list_add_tail(&page->lru, &pcp->lists[migratetype]);      else          list_add(&page->lru, &pcp->lists[migratetype]);      pcp->count++;      if (pcp->count >= pcp->high) {          unsigned long batch = ACCESS_ONCE(pcp->batch);          free_pcppages_bulk(zone, batch, pcp);          pcp->count -= batch;      }    out:      local_irq_restore(flags);  }

先看一下free_pages_prepare()的实现:

【file:/mm/page_alloc.c】  static bool free_pages_prepare(struct page *page, unsigned int order)  {      int i;      int bad = 0;        trace_mm_page_free(page, order);      kmemcheck_free_shadow(page, order);        if (PageAnon(page))          page->mapping = NULL;      for (i = 0; i < (1 << order); i++)          bad += free_pages_check(page + i);      if (bad)          return false;        if (!PageHighMem(page)) {          debug_check_no_locks_freed(page_address(page),                         PAGE_SIZE << order);          debug_check_no_obj_freed(page_address(page),                         PAGE_SIZE << order);      }      arch_free_page(page, order);      kernel_map_pages(page, 1 << order, 0);        return true;  }

其中trace_mm_page_free()用于trace追踪机制;而kmemcheck_free_shadow()用于内存检测工具kmemcheck,如果未定义CONFIG_KMEMCHECK的情况下,它是一个空函数。接着后面的PageAnon()等都是用于检查页面状态的情况,以判断页面是否允许释放,避免错误释放页面。由此可知该函数主要作用是检查和调试。

接着回到free_hot_cold_page()函数中,get_pageblock_migratetype()和set_freepage_migratetype()分别是获取和设置页面的迁移类型,即设置到page->index;local_irq_save()和末尾的local_irq_restore()则用于保存恢复中断请求标识。

if (migratetype >= MIGRATE_PCPTYPES) {        if (unlikely(is_migrate_isolate(migratetype))) {            free_one_page(zone, page, 0, migratetype);            goto out;        }        migratetype = MIGRATE_MOVABLE;    }

这里面的MIGRATE_PCPTYPES用来表示每CPU页框高速缓存的数据结构中的链表的迁移类型数目,如果某个页面类型大于MIGRATE_PCPTYPES则表示其可挂到可移动列表中,如果迁移类型是MIGRATE_ISOLATE则直接将该其释放到伙伴管理算法中。

末尾部分:

    pcp = &this_cpu_ptr(zone->pageset)->pcp;        if (cold)            list_add_tail(&page->lru, &pcp->lists[migratetype]);        else            list_add(&page->lru, &pcp->lists[migratetype]);        pcp->count++;        if (pcp->count >= pcp->high) {            unsigned long batch = ACCESS_ONCE(pcp->batch);            free_pcppages_bulk(zone, batch, pcp);            pcp->count -= batch;        }

其中pcp表示内存管理区的每CPU管理结构,cold表示冷热页面,如果是冷页就将其挂接到对应迁移类型的链表尾,而若是热页则挂接到对应迁移类型的链表头。其中if (pcp->count >= pcp->high)判断值得注意,其用于如果释放的页面超过了每CPU缓存的最大页面数时,则将其批量释放至伙伴管理算法中,其中批量数为pcp->batch。

具体分析一下释放至伙伴管理算法的实现free_pcppages_bulk():

【file:/mm/page_alloc.c】  /*   * Frees a number of pages from the PCP lists   * Assumes all pages on list are in same zone, and of same order.   * count is the number of pages to free.   *   * If the zone was previously in an "all pages pinned" state then look to   * see if this freeing clears that state.   *   * And clear the zone's pages_scanned counter, to hold off the "all pages are   * pinned" detection logic.   */  static void free_pcppages_bulk(struct zone *zone, int count,                      struct per_cpu_pages *pcp)  {      int migratetype = 0;      int batch_free = 0;      int to_free = count;        spin_lock(&zone->lock);      zone->pages_scanned = 0;        while (to_free) {          struct page *page;          struct list_head *list;            /*           * Remove pages from lists in a round-robin fashion. A           * batch_free count is maintained that is incremented when an           * empty list is encountered. This is so more pages are freed           * off fuller lists instead of spinning excessively around empty           * lists           */          do {              batch_free++;              if (++migratetype == MIGRATE_PCPTYPES)                  migratetype = 0;              list = &pcp->lists[migratetype];          } while (list_empty(list));            /* This is the only non-empty list. Free them all. */          if (batch_free == MIGRATE_PCPTYPES)              batch_free = to_free;            do {              int mt; /* migratetype of the to-be-freed page */                page = list_entry(list->prev, struct page, lru);              /* must delete as __free_one_page list manipulates */              list_del(&page->lru);              mt = get_freepage_migratetype(page);              /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */              __free_one_page(page, zone, 0, mt);              trace_mm_page_pcpu_drain(page, 0, mt);              if (likely(!is_migrate_isolate_page(page))) {                  __mod_zone_page_state(zone, NR_FREE_PAGES, 1);                  if (is_migrate_cma(mt))                      __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);              }          } while (--to_free && --batch_free && !list_empty(list));      }      spin_unlock(&zone->lock);  }

里面while大循环用于计数释放指定批量数的页面。其中释放方式是先自MIGRATE_UNMOVABLE迁移类型起(止于MIGRATE_PCPTYPES迁移类型),遍历各个链表统计其链表中页面数:

do {        batch_free++;        if (++migratetype == MIGRATE_PCPTYPES)            migratetype = 0;        list = &pcp->lists[migratetype];    } while (list_empty(list));

如果只有MIGRATE_PCPTYPES迁移类型的链表为非空链表,则全部页面将从该链表中释放。

后面的do{}while()里面,其先将页面从lru链表中去除,然后获取页面的迁移类型,通过__free_one_page()释放页面,最后使用__mod_zone_page_state()修改管理区的状态值。

着重分析一下__free_one_page()的实现:

【file:/mm/page_alloc.c】  /*   * Freeing function for a buddy system allocator.   *   * The concept of a buddy system is to maintain direct-mapped table   * (containing bit values) for memory blocks of various "orders".   * The bottom level table contains the map for the smallest allocatable   * units of memory (here, pages), and each level above it describes   * pairs of units from the levels below, hence, "buddies".   * At a high level, all that happens here is marking the table entry   * at the bottom level available, and propagating the changes upward   * as necessary, plus some accounting needed to play nicely with other   * parts of the VM system.   * At each level, we keep a list of pages, which are heads of continuous   * free pages of length of (1 << order) and marked with _mapcount   * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)   * field.   * So when we are allocating or freeing one, we can derive the state of the   * other. That is, if we allocate a small block, and both were   * free, the remainder of the region must be split into blocks.   * If a block is freed, and its buddy is also free, then this   * triggers coalescing into a block of larger size.   *   * -- nyc   */    static inline void __free_one_page(struct page *page,          struct zone *zone, unsigned int order,          int migratetype)  {      unsigned long page_idx;      unsigned long combined_idx;      unsigned long uninitialized_var(buddy_idx);      struct page *buddy;        VM_BUG_ON(!zone_is_initialized(zone));        if (unlikely(PageCompound(page)))          if (unlikely(destroy_compound_page(page, order)))              return;        VM_BUG_ON(migratetype == -1);        page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);        VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);      VM_BUG_ON_PAGE(bad_range(zone, page), page);        while (order < MAX_ORDER-1) {          buddy_idx = __find_buddy_index(page_idx, order);          buddy = page + (buddy_idx - page_idx);          if (!page_is_buddy(page, buddy, order))              break;          /*           * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,           * merge with it and move up one order.           */          if (page_is_guard(buddy)) {              clear_page_guard_flag(buddy);              set_page_private(page, 0);              __mod_zone_freepage_state(zone, 1 << order,                            migratetype);          } else {              list_del(&buddy->lru);              zone->free_area[order].nr_free--;              rmv_page_order(buddy);          }          combined_idx = buddy_idx & page_idx;          page = page + (combined_idx - page_idx);          page_idx = combined_idx;          order++;      }      set_page_order(page, order);        /*       * If this is not the largest possible page, check if the buddy       * of the next-highest order is free. If it is, it's possible       * that pages are being freed that will coalesce soon. In case,       * that is happening, add the free page to the tail of the list       * so it's less likely to be used soon and more likely to be merged       * as a higher order page       */      if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {          struct page *higher_page, *higher_buddy;          combined_idx = buddy_idx & page_idx;          higher_page = page + (combined_idx - page_idx);          buddy_idx = __find_buddy_index(combined_idx, order + 1);          higher_buddy = higher_page + (buddy_idx - combined_idx);          if (page_is_buddy(higher_page, higher_buddy, order + 1)) {              list_add_tail(&page->lru,                  &zone->free_area[order].free_list[migratetype]);              goto out;          }      }        list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);  out:      zone->free_area[order].nr_free++;  }

于while (order < MAX_ORDER-1)前面主要是对释放的页面进行检查校验操作。而while循环内,通过__find_buddy_index()获取与当前释放的页面处于同一阶的伙伴页面索引值,同时藉此索引值计算出伙伴页面地址,并做伙伴页面检查以确定其是否可以合并,若否则退出;接着if (page_is_guard(buddy))用于对页面的debug_flags成员做检查,由于未配置CONFIG_DEBUG_PAGEALLOC,page_is_guard()固定返回false;则剩下的操作主要就是将页面从分配链中摘除,同时将页面合并并将其处于的阶提升一级。

退出while循环后,通过set_page_order()设置页面最终可合并成为的管理阶。最后判断当前合并的页面是否为最大阶,否则将页面放至伙伴管理链表的末尾,避免其过早被分配,得以机会进一步与高阶页面进行合并。末了,将最后的挂入的阶的空闲计数加1。

至此伙伴管理算法的页面释放完毕。

而__free_pages_ok()的页面释放实现调用栈则是:

__free_pages_ok()    —>free_one_page()    —>__free_one_page()

殊途同归,最终还是__free_one_page()来释放,具体的过程就不再仔细分析了。