朴素贝叶斯python代码实现(西瓜书)
- 2019 年 10 月 3 日
- 筆記
朴素贝叶斯python代码实现(西瓜书)
摘要:
朴素贝叶斯也是机器学习中一种非常常见的分类方法,对于二分类问题,并且数据集特征为离散型属性的时候,
使用起来非常的方便。原理简单,训练效率高,拟合效果好。
朴素贝叶斯
贝叶斯公式:
朴素贝叶斯之所以称这为朴素,是因为假设了各个特征是相互独立的,因此假定下公式成立:
则朴素贝叶斯算法的计算公式如下:
在实际计算中,上面的公式会做如下略微改动:
- 由于某些特征属性的值P(Xi|Ci)可能很小,多个特征的p值连乘后可能被约等于0。可以公式两边取log然后变乘法为加法,避免类乘问题。
- P(Ci) 和P(Xi|Ci) 一般不直接使用样本的频率计算出来,一般会使用拉普拉斯平滑。
上面公式中,Dc为该类别的频数,N表示所有类别的可能数。
上面公式中,Dc,xi为该特征对应属性的频数,Dc为该类别的频数,Ni表示该特征的可能的属性数。
对应的西瓜书数据集为
色泽 根蒂 敲声 纹理 脐部 触感 好瓜 青绿 蜷缩 浊响 清晰 凹陷 硬滑 是 乌黑 蜷缩 沉闷 清晰 凹陷 硬滑 是 乌黑 蜷缩 浊响 清晰 凹陷 硬滑 是 青绿 蜷缩 沉闷 清晰 凹陷 硬滑 是 浅白 蜷缩 浊响 清晰 凹陷 硬滑 是 青绿 稍蜷 浊响 清晰 稍凹 软粘 是 乌黑 稍蜷 浊响 稍糊 稍凹 软粘 是 乌黑 稍蜷 浊响 清晰 稍凹 硬滑 是 乌黑 稍蜷 沉闷 稍糊 稍凹 硬滑 否 青绿 硬挺 清脆 清晰 平坦 软粘 否 浅白 硬挺 清脆 模糊 平坦 硬滑 否 浅白 蜷缩 浊响 模糊 平坦 软粘 否 青绿 稍蜷 浊响 稍糊 凹陷 硬滑 否 浅白 稍蜷 沉闷 稍糊 凹陷 硬滑 否 乌黑 稍蜷 浊响 清晰 稍凹 软粘 否 浅白 蜷缩 浊响 模糊 平坦 硬滑 否 青绿 蜷缩 沉闷 稍糊 稍凹 硬滑 否
python实现
#encoding:utf-8 import pandas as pd import numpy as np class NaiveBayes: def __init__(self): self.model = {}#key 为类别名 val 为字典PClass表示该类的该类,PFeature:{}对应对于各个特征的概率 def calEntropy(self, y): # 计算熵 valRate = y.value_counts().apply(lambda x : x / y.size) # 频次汇总 得到各个特征对应的概率 valEntropy = np.inner(valRate, np.log2(valRate)) * -1 return valEntropy def fit(self, xTrain, yTrain = pd.Series()): if not yTrain.empty:#如果不传,自动选择最后一列作为分类标签 xTrain = pd.concat([xTrain, yTrain], axis=1) self.model = self.buildNaiveBayes(xTrain) return self.model def buildNaiveBayes(self, xTrain): yTrain = xTrain.iloc[:,-1] yTrainCounts = yTrain.value_counts()# 频次汇总 得到各个特征对应的概率 yTrainCounts = yTrainCounts.apply(lambda x : (x + 1) / (yTrain.size + yTrainCounts.size)) #使用了拉普拉斯平滑 retModel = {} for nameClass, val in yTrainCounts.items(): retModel[nameClass] = {'PClass': val, 'PFeature':{}} propNamesAll = xTrain.columns[:-1] allPropByFeature = {} for nameFeature in propNamesAll: allPropByFeature[nameFeature] = list(xTrain[nameFeature].value_counts().index) #print(allPropByFeature) for nameClass, group in xTrain.groupby(xTrain.columns[-1]): for nameFeature in propNamesAll: eachClassPFeature = {} propDatas = group[nameFeature] propClassSummary = propDatas.value_counts()# 频次汇总 得到各个特征对应的概率 for propName in allPropByFeature[nameFeature]: if not propClassSummary.get(propName): propClassSummary[propName] = 0#如果有属性灭有,那么自动补0 Ni = len(allPropByFeature[nameFeature]) propClassSummary = propClassSummary.apply(lambda x : (x + 1) / (propDatas.size + Ni))#使用了拉普拉斯平滑 for nameFeatureProp, valP in propClassSummary.items(): eachClassPFeature[nameFeatureProp] = valP retModel[nameClass]['PFeature'][nameFeature] = eachClassPFeature return retModel def predictBySeries(self, data): curMaxRate = None curClassSelect = None for nameClass, infoModel in self.model.items(): rate = 0 rate += np.log(infoModel['PClass']) PFeature = infoModel['PFeature'] for nameFeature, val in data.items(): propsRate = PFeature.get(nameFeature) if not propsRate: continue rate += np.log(propsRate.get(val, 0))#使用log加法避免很小的小数连续乘,接近零 #print(nameFeature, val, propsRate.get(val, 0)) #print(nameClass, rate) if curMaxRate == None or rate > curMaxRate: curMaxRate = rate curClassSelect = nameClass return curClassSelect def predict(self, data): if isinstance(data, pd.Series): return self.predictBySeries(data) return data.apply(lambda d: self.predictBySeries(d), axis=1) dataTrain = pd.read_csv("xiguadata.csv", encoding = "gbk") naiveBayes = NaiveBayes() treeData = naiveBayes.fit(dataTrain) import json print(json.dumps(treeData, ensure_ascii=False)) pd = pd.DataFrame({'预测值':naiveBayes.predict(dataTrain), '正取值':dataTrain.iloc[:,-1]}) print(pd) print('正确率:%f%%'%(pd[pd['预测值'] == pd['正取值']].shape[0] * 100.0 / pd.shape[0]))
输出
{"否": {"PClass": 0.5263157894736842, "PFeature": {"色泽": {"浅白": 0.4166666666666667, "青绿": 0.3333333333333333, "乌 黑": 0.25}, "根蒂": {"稍蜷": 0.4166666666666667, "蜷缩": 0.3333333333333333, "硬挺": 0.25}, "敲声": {"浊响": 0.4166666666666667, "沉闷": 0.3333333333333333, "清脆": 0.25}, "纹理": {"稍糊": 0.4166666666666667, "模糊": 0.3333333333333333, "清晰": 0.25}, "脐部": {"平坦": 0.4166666666666667, "稍凹": 0.3333333333333333, "凹陷": 0.25}, "触感": {"硬滑": 0.6363636363636364, "软粘": 0.36363636363636365}}}, "是": {"PClass": 0.47368421052631576, "PFeature": {"色泽": {"乌黑": 0.45454545454545453, "青绿": 0.36363636363636365, "浅白": 0.18181818181818182}, "根蒂": {"蜷缩": 0.5454545454545454, "稍蜷": 0.36363636363636365, "硬挺": 0.09090909090909091}, "敲声": {"浊响": 0.6363636363636364, "沉闷": 0.2727272727272727, "清脆": 0.09090909090909091}, "纹理": {"清晰": 0.7272727272727273, "稍糊": 0.18181818181818182, "模糊": 0.09090909090909091}, "脐 部": {"凹陷": 0.5454545454545454, "稍凹": 0.36363636363636365, "平坦": 0.09090909090909091}, "触感": {"硬滑": 0.7, "软粘": 0.3}}}} 预测值 正取值 0 是 是 1 是 是 2 是 是 3 是 是 4 是 是 5 是 是 6 否 是 7 是 是 8 否 否 9 否 否 10 否 否 11 否 否 12 是 否 13 否 否 14 是 否 15 否 否 16 否 否 正确率:82.352941%
总结:
- 贝叶斯分类器是一种生成式模型,不是直接拟合分类结果,而是拟合出后验概率公式计算对应分类的概率。
- 本文只介绍了二分类,也可以用来处理多分类问题。
- 对于小规模数据集,表现良好。
- 建立在特征相互独立的假设上。
- 这是我的github主页https://github.com/fanchy,有些有意思的分享。