PyTorch 系列教程之空間變換器網路
- 2019 年 10 月 6 日
- 筆記
在本教程中,您將學習如何使用稱為空間變換器網路的視覺注意機制來擴充您的網路。你可以在DeepMind paper 閱讀更多有關空間變換器網路的內容。
空間變換器網路是對任何空間變換的差異化關注的概括。空間變換器網路(簡稱STN)允許神經網路學習如何在輸入影像上執行空間變換, 以增強模型的幾何不變性。例如,它可以裁剪感興趣的區域,縮放並校正影像的方向。而這可能是一種有用的機制,因為CNN對於旋轉和 縮放以及更一般的仿射變換並不是不變的。
關於STN的最棒的事情之一是能夠簡單地將其插入任何現有的CNN,而且只需很少的修改。
from __future__ import print_function import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchvision from torchvision import datasets, transforms import matplotlib.pyplot as plt import numpy as np plt.ion() # 交互模式
1.載入數據
在這篇文章中,我們嘗試了經典的 MNIST 數據集。使用標準卷積網路增強空間變換器網路。
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 訓練數據集 train_loader = torch.utils.data.DataLoader( datasets.MNIST(root='.', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=64, shuffle=True, num_workers=4) # 測試數據集 test_loader = torch.utils.data.DataLoader( datasets.MNIST(root='.', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=64, shuffle=True, num_workers=4)
- 輸出結果
Downloading http://yann.lecun.com/exdb/mnist/train-http://pytorch.panchuang.net/FourSection/images-idx3-ubyte.gz to ./MNIST/raw/train-http://pytorch.panchuang.net/FourSection/images-idx3-ubyte.gz Extracting ./MNIST/raw/train-http://pytorch.panchuang.net/FourSection/images-idx3-ubyte.gz Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to ./MNIST/raw/train-labels-idx1-ubyte.gz Extracting ./MNIST/raw/train-labels-idx1-ubyte.gz Downloading http://yann.lecun.com/exdb/mnist/t10k-http://pytorch.panchuang.net/FourSection/images-idx3-ubyte.gz to ./MNIST/raw/t10k-http://pytorch.panchuang.net/FourSection/images-idx3-ubyte.gz Extracting ./MNIST/raw/t10k-http://pytorch.panchuang.net/FourSection/images-idx3-ubyte.gz Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to ./MNIST/raw/t10k-labels-idx1-ubyte.gz Extracting ./MNIST/raw/t10k-labels-idx1-ubyte.gz Processing... Done!
2.什麼是空間變換器網路?
空間變換器網路歸結為三個主要組成部分:
- 本地網路(Localisation Network)是常規CNN,其對變換參數進行回歸。不會從該數據集中明確地學習轉換,而是網路自動學習增強全局準確性的空間變換。
- 網格生成器( Grid Genator)在輸入影像中生成與輸出影像中的每個像素相對應的坐標網格。
- 取樣器(Sampler)使用變換的參數並將其應用於輸入影像。

注意: 我們使用最新版本的Pytorch,它應該包含affine_grid和grid_sample模組。
class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) # 空間變換器定位 - 網路 self.localization = nn.Sequential( nn.Conv2d(1, 8, kernel_size=7), nn.MaxPool2d(2, stride=2), nn.ReLU(True), nn.Conv2d(8, 10, kernel_size=5), nn.MaxPool2d(2, stride=2), nn.ReLU(True) ) # 3 * 2 affine矩陣的回歸量 self.fc_loc = nn.Sequential( nn.Linear(10 * 3 * 3, 32), nn.ReLU(True), nn.Linear(32, 3 * 2) ) # 使用身份轉換初始化權重/偏差 self.fc_loc[2].weight.data.zero_() self.fc_loc[2].bias.data.copy_(torch.tensor([1, 0, 0, 0, 1, 0], dtype=torch.float)) # 空間變換器網路轉發功能 def stn(self, x): xs = self.localization(x) xs = xs.view(-1, 10 * 3 * 3) theta = self.fc_loc(xs) theta = theta.view(-1, 2, 3) grid = F.affine_grid(theta, x.size()) x = F.grid_sample(x, grid) return x def forward(self, x): # transform the input x = self.stn(x) # 執行一般的前進傳遞 x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x, dim=1) model = Net().to(device)
3.訓練模型
訓練模型 現在我們使用 SGD(隨機梯度下降)演算法來訓練模型。網路正在以有監督的方式學習分類任務。同時,該模型以端到端的方式自動學習STN。
optimizer = optim.SGD(model.parameters(), lr=0.01) def train(epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() if batch_idx % 500 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) # # 一種簡單的測試程式,用於測量STN在MNIST上的性能。. # def test(): with torch.no_grad(): model.eval() test_loss = 0 correct = 0 for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) # 累加批量損失 test_loss += F.nll_loss(output, target, size_average=False).item() # 獲取最大對數概率的索引 pred = output.max(1, keepdim=True)[1] correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)n' .format(test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset)))
4.可視化 STN 結果
現在,我們將檢查我們學習的視覺注意機制的結果。
我們定義了一個小輔助函數,以便在訓練時可視化變換。
def convert_http://pytorch.panchuang.net/FourSection/image_np(inp): """Convert a Tensor to numpy http://pytorch.panchuang.net/FourSection/image.""" inp = inp.numpy().transpose((1, 2, 0)) mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) inp = std * inp + mean inp = np.clip(inp, 0, 1) return inp # 我們想要在訓練之後可視化空間變換器層的輸出 # 我們使用STN可視化一批輸入影像和相應的變換批次。 def visualize_stn(): with torch.no_grad(): # Get a batch of training data data = next(iter(test_loader))[0].to(device) input_tensor = data.cpu() transformed_input_tensor = model.stn(data).cpu() in_grid = convert_http://pytorch.panchuang.net/FourSection/image_np( torchvision.utils.make_grid(input_tensor)) out_grid = convert_http://pytorch.panchuang.net/FourSection/image_np( torchvision.utils.make_grid(transformed_input_tensor)) # Plot the results side-by-side f, axarr = plt.subplots(1, 2) axarr[0].imshow(in_grid) axarr[0].set_title('Dataset http://pytorch.panchuang.net/FourSection/images') axarr[1].imshow(out_grid) axarr[1].set_title('Transformed http://pytorch.panchuang.net/FourSection/images') for epoch in range(1, 20 + 1): train(epoch) test() # 在某些輸入批處理上可視化STN轉換 visualize_stn() plt.ioff() plt.show()
- 輸出結果

Train Epoch: 1 [0/60000 (0%)] Loss: 2.336866 Train Epoch: 1 [32000/60000 (53%)] Loss: 0.841600 Test set: Average loss: 0.2624, Accuracy: 9212/10000 (92%) Train Epoch: 2 [0/60000 (0%)] Loss: 0.527656 Train Epoch: 2 [32000/60000 (53%)] Loss: 0.428908 Test set: Average loss: 0.1176, Accuracy: 9632/10000 (96%) Train Epoch: 3 [0/60000 (0%)] Loss: 0.305364 Train Epoch: 3 [32000/60000 (53%)] Loss: 0.263615 Test set: Average loss: 0.1099, Accuracy: 9677/10000 (97%) Train Epoch: 4 [0/60000 (0%)] Loss: 0.169776 Train Epoch: 4 [32000/60000 (53%)] Loss: 0.408683 Test set: Average loss: 0.0861, Accuracy: 9734/10000 (97%) Train Epoch: 5 [0/60000 (0%)] Loss: 0.286635 Train Epoch: 5 [32000/60000 (53%)] Loss: 0.122162 Test set: Average loss: 0.0817, Accuracy: 9743/10000 (97%) Train Epoch: 6 [0/60000 (0%)] Loss: 0.331074 Train Epoch: 6 [32000/60000 (53%)] Loss: 0.126413 Test set: Average loss: 0.0589, Accuracy: 9822/10000 (98%) Train Epoch: 7 [0/60000 (0%)] Loss: 0.109780 Train Epoch: 7 [32000/60000 (53%)] Loss: 0.172199 Test set: Average loss: 0.0629, Accuracy: 9814/10000 (98%) Train Epoch: 8 [0/60000 (0%)] Loss: 0.078934 Train Epoch: 8 [32000/60000 (53%)] Loss: 0.156452 Test set: Average loss: 0.0563, Accuracy: 9839/10000 (98%) Train Epoch: 9 [0/60000 (0%)] Loss: 0.063500 Train Epoch: 9 [32000/60000 (53%)] Loss: 0.186023 Test set: Average loss: 0.0713, Accuracy: 9799/10000 (98%) Train Epoch: 10 [0/60000 (0%)] Loss: 0.199808 Train Epoch: 10 [32000/60000 (53%)] Loss: 0.083502 Test set: Average loss: 0.0528, Accuracy: 9850/10000 (98%) Train Epoch: 11 [0/60000 (0%)] Loss: 0.092909 Train Epoch: 11 [32000/60000 (53%)] Loss: 0.204410 Test set: Average loss: 0.0471, Accuracy: 9857/10000 (99%) Train Epoch: 12 [0/60000 (0%)] Loss: 0.078322 Train Epoch: 12 [32000/60000 (53%)] Loss: 0.041391 Test set: Average loss: 0.0634, Accuracy: 9796/10000 (98%) Train Epoch: 13 [0/60000 (0%)] Loss: 0.061228 Train Epoch: 13 [32000/60000 (53%)] Loss: 0.137952 Test set: Average loss: 0.0654, Accuracy: 9802/10000 (98%) Train Epoch: 14 [0/60000 (0%)] Loss: 0.068635 Train Epoch: 14 [32000/60000 (53%)] Loss: 0.084583 Test set: Average loss: 0.0515, Accuracy: 9853/10000 (99%) Train Epoch: 15 [0/60000 (0%)] Loss: 0.263158 Train Epoch: 15 [32000/60000 (53%)] Loss: 0.127036 Test set: Average loss: 0.0493, Accuracy: 9851/10000 (99%) Train Epoch: 16 [0/60000 (0%)] Loss: 0.083642 Train Epoch: 16 [32000/60000 (53%)] Loss: 0.028274 Test set: Average loss: 0.0461, Accuracy: 9867/10000 (99%) Train Epoch: 17 [0/60000 (0%)] Loss: 0.076734 Train Epoch: 17 [32000/60000 (53%)] Loss: 0.034796 Test set: Average loss: 0.0409, Accuracy: 9864/10000 (99%) Train Epoch: 18 [0/60000 (0%)] Loss: 0.122501 Train Epoch: 18 [32000/60000 (53%)] Loss: 0.152187 Test set: Average loss: 0.0474, Accuracy: 9860/10000 (99%) Train Epoch: 19 [0/60000 (0%)] Loss: 0.050512 Train Epoch: 19 [32000/60000 (53%)] Loss: 0.270055 Test set: Average loss: 0.0416, Accuracy: 9878/10000 (99%) Train Epoch: 20 [0/60000 (0%)] Loss: 0.073357 Train Epoch: 20 [32000/60000 (53%)] Loss: 0.017542 Test set: Average loss: 0.0713, Accuracy: 9816/10000 (98%)