Java 8中Stream API的這些奇技淫巧!你都Get到了嗎?
- 2019 年 10 月 6 日
- 筆記
Stream簡介
1、Java 8引入了全新的Stream API。這裡的Stream和I/O流不同,它更像具有Iterable的集合類,但行為和集合類又有所不同。
2、stream是對集合對象功能的增強,它專註於對集合對象進行各種非常便利、高效的聚合操作,或者大批量數據操作。
3、只要給出需要對其包含的元素執行什麼操作,比如 「過濾掉長度大於 10 的字元串」、「獲取每個字元串的首字母」等,Stream 會隱式地在內部進行遍歷,做出相應的數據轉換。
為什麼要使用Stream
1、函數式編程帶來的好處尤為明顯。這種程式碼更多地表達了業務邏輯的意圖,而不是它的實現機制。易讀的程式碼也易於維護、更可靠、更不容易出錯。
2、高端
實例數據源
public class Data { private static List<PersonModel> list = null; static { PersonModel wu = new PersonModel("wu qi", 18, "男"); PersonModel zhang = new PersonModel("zhang san", 19, "男"); PersonModel wang = new PersonModel("wang si", 20, "女"); PersonModel zhao = new PersonModel("zhao wu", 20, "男"); PersonModel chen = new PersonModel("chen liu", 21, "男"); list = Arrays.asList(wu, zhang, wang, zhao, chen); } public static List<PersonModel> getData() { return list; } }
Filter
1、遍曆數據並檢查其中的元素時使用。
2、filter接受一個函數作為參數,該函數用Lambda表達式表示。

/** * 過濾所有的男性 */ public static void fiterSex(){ List<PersonModel> data = Data.getData(); //old List<PersonModel> temp=new ArrayList<>(); for (PersonModel person:data) { if ("男".equals(person.getSex())){ temp.add(person); } } System.out.println(temp); //new List<PersonModel> collect = data .stream() .filter(person -> "男".equals(person.getSex())) .collect(toList()); System.out.println(collect); } /** * 過濾所有的男性 並且小於20歲 */ public static void fiterSexAndAge(){ List<PersonModel> data = Data.getData(); //old List<PersonModel> temp=new ArrayList<>(); for (PersonModel person:data) { if ("男".equals(person.getSex())&&person.getAge()<20){ temp.add(person); } } //new 1 List<PersonModel> collect = data .stream() .filter(person -> { if ("男".equals(person.getSex())&&person.getAge()<20){ return true; } return false; }) .collect(toList()); //new 2 List<PersonModel> collect1 = data .stream() .filter(person -> ("男".equals(person.getSex())&&person.getAge()<20)) .collect(toList()); }
Map
1、map生成的是個一對一映射,for的作用
2、比較常用
3、而且很簡單

/** * 取出所有的用戶名字 */ public static void getUserNameList(){ List<PersonModel> data = Data.getData(); //old List<String> list=new ArrayList<>(); for (PersonModel persion:data) { list.add(persion.getName()); } System.out.println(list); //new 1 List<String> collect = data.stream().map(person -> person.getName()).collect(toList()); System.out.println(collect); //new 2 List<String> collect1 = data.stream().map(PersonModel::getName).collect(toList()); System.out.println(collect1); //new 3 List<String> collect2 = data.stream().map(person -> { System.out.println(person.getName()); return person.getName(); }).collect(toList()); }
FlatMap
1、顧名思義,跟map差不多,更深層次的操作
2、但還是有區別的
3、map和flat返回值不同
4、Map 每個輸入元素,都按照規則轉換成為另外一個元素。 還有一些場景,是一對多映射關係的,這時需要 flatMap。
5、Map一對一
6、Flatmap一對多
7、map和flatMap的方法聲明是不一樣的
(1) <r> Stream<r> map(Function mapper);
(2) <r> Stream<r> flatMap(Function> mapper);
(3) map和flatMap的區別:我個人認為,flatMap的可以處理更深層次的數據,入參為多個list,結果可以返回為一個list,而map是一對一的,入參是多個list,結果返回必須是多個list。通俗的說,如果入參都是對象,那麼flatMap可以操作對象裡面的對象,而map只能操作第一層。

public static void flatMapString() { List<PersonModel> data = Data.getData(); //返回類型不一樣 List<String> collect = data.stream() .flatMap(person -> Arrays.stream(person.getName().split(" "))).collect(toList()); List<Stream<String>> collect1 = data.stream() .map(person -> Arrays.stream(person.getName().split(" "))).collect(toList()); //用map實現 List<String> collect2 = data.stream() .map(person -> person.getName().split(" ")) .flatMap(Arrays::stream).collect(toList()); //另一種方式 List<String> collect3 = data.stream() .map(person -> person.getName().split(" ")) .flatMap(str -> Arrays.asList(str).stream()).collect(toList()); }
Reduce
1、感覺類似遞歸
2、數字(字元串)累加
3、個人沒咋用過

public static void reduceTest(){ //累加,初始化值是 10 Integer reduce = Stream.of(1, 2, 3, 4) .reduce(10, (count, item) ->{ System.out.println("count:"+count); System.out.println("item:"+item); return count + item; } ); System.out.println(reduce); Integer reduce1 = Stream.of(1, 2, 3, 4) .reduce(0, (x, y) -> x + y); System.out.println(reduce1); String reduce2 = Stream.of("1", "2", "3") .reduce("0", (x, y) -> (x + "," + y)); System.out.println(reduce2); }
Collect
1、collect在流中生成列表,map,等常用的數據結構
2、toList()
3、toSet()
4、toMap()
5、自定義
/** * toList */ * toList */ public static void toListTest(){ List<PersonModel> data = Data.getData(); List<String> collect = data.stream() .map(PersonModel::getName) .collect(Collectors.toList()); } /** * toSet */ public static void toSetTest(){ List<PersonModel> data = Data.getData(); Set<String> collect = data.stream() .map(PersonModel::getName) .collect(Collectors.toSet()); } /** * toMap */ public static void toMapTest(){ List<PersonModel> data = Data.getData(); Map<String, Integer> collect = data.stream() .collect( Collectors.toMap(PersonModel::getName, PersonModel::getAge) ); data.stream() .collect(Collectors.toMap(per->per.getName(), value->{ return value+"1"; })); } /** * 指定類型 */ public static void toTreeSetTest(){ List<PersonModel> data = Data.getData(); TreeSet<PersonModel> collect = data.stream() .collect(Collectors.toCollection(TreeSet::new)); System.out.println(collect); } /** * 分組 */ public static void toGroupTest(){ List<PersonModel> data = Data.getData(); Map<Boolean, List<PersonModel>> collect = data.stream() .collect(Collectors.groupingBy(per -> "男".equals(per.getSex()))); System.out.println(collect); } /** * 分隔 */ public static void toJoiningTest(){ List<PersonModel> data = Data.getData(); String collect = data.stream() .map(personModel -> personModel.getName()) .collect(Collectors.joining(",", "{", "}")); System.out.println(collect); } /** * 自定義 */ public static void reduce(){ List<String> collect = Stream.of("1", "2", "3").collect( Collectors.reducing(new ArrayList<String>(), x -> Arrays.asList(x), (y, z) -> { y.addAll(z); return y; })); System.out.println(collect); }
Optional
1、Optional 是為核心類庫新設計的一個數據類型,用來替換 null 值。
2、人們對原有的 null 值有很多抱怨,甚至連發明這一概念的Tony Hoare也是如此,他曾說這是自己的一個「價值連城的錯誤」
3、用處很廣,不光在lambda中,哪都能用
4、Optional.of(T),T為非空,否則初始化報錯
5、Optional.ofNullable(T),T為任意,可以為空
6、isPresent(),相當於 !=null
7、ifPresent(T), T可以是一段lambda表達式 ,或者其他程式碼,非空則執行
public static void main(String[] args) { PersonModel personModel=new PersonModel(); //對象為空則打出 - Optional<Object> o = Optional.of(personModel); System.out.println(o.isPresent()?o.get():"-"); //名稱為空則打出 - Optional<String> name = Optional.ofNullable(personModel.getName()); System.out.println(name.isPresent()?name.get():"-"); //如果不為空,則打出xxx Optional.ofNullable("test").ifPresent(na->{ System.out.println(na+"ifPresent"); }); //如果空,則返回指定字元串 System.out.println(Optional.ofNullable(null).orElse("-")); System.out.println(Optional.ofNullable("1").orElse("-")); //如果空,則返回 指定方法,或者程式碼 System.out.println(Optional.ofNullable(null).orElseGet(()->{ return "hahah"; })); System.out.println(Optional.ofNullable("1").orElseGet(()->{ return "hahah"; })); //如果空,則可以拋出異常 System.out.println(Optional.ofNullable("1").orElseThrow(()->{ throw new RuntimeException("ss"); })); // Objects.requireNonNull(null,"is null"); //利用 Optional 進行多級判斷 EarthModel earthModel1 = new EarthModel(); //old if (earthModel1!=null){ if (earthModel1.getTea()!=null){ //... } } //new Optional.ofNullable(earthModel1) .map(EarthModel::getTea) .map(TeaModel::getType) .isPresent(); // Optional<EarthModel> earthModel = Optional.ofNullable(new EarthModel()); // Optional<List<PersonModel>> personModels = earthModel.map(EarthModel::getPersonModels); // Optional<Stream<String>> stringStream = personModels.map(per -> per.stream().map(PersonModel::getName)); //判斷對象中的list Optional.ofNullable(new EarthModel()) .map(EarthModel::getPersonModels) .map(pers->pers .stream() .map(PersonModel::getName) .collect(toList())) .ifPresent(per-> System.out.println(per)); List<PersonModel> models=Data.getData(); Optional.ofNullable(models) .map(per -> per .stream() .map(PersonModel::getName) .collect(toList())) .ifPresent(per-> System.out.println(per)); }
並發
1、stream替換成parallelStream或 parallel
2、輸入流的大小並不是決定並行化是否會帶來速度提升的唯一因素,性能還會受到編寫程式碼的方式和核的數量的影響
3、影響性能的五要素是:數據大小、源數據結構、值是否裝箱、可用的CPU核數量,以及處理每個元素所花的時間
//根據數字的大小,有不同的結果 private static int size=10000000; public static void main(String[] args) { System.out.println("-----------List-----------"); testList(); System.out.println("-----------Set-----------"); testSet(); } /** * 測試list */ public static void testList(){ List<Integer> list = new ArrayList<>(size); for (Integer i = 0; i < size; i++) { list.add(new Integer(i)); } List<Integer> temp1 = new ArrayList<>(size); //老的 long start=System.currentTimeMillis(); for (Integer i: list) { temp1.add(i); } System.out.println(+System.currentTimeMillis()-start); //同步 long start1=System.currentTimeMillis(); list.stream().collect(Collectors.toList()); System.out.println(System.currentTimeMillis()-start1); //並發 long start2=System.currentTimeMillis(); list.parallelStream().collect(Collectors.toList()); System.out.println(System.currentTimeMillis()-start2); } /** * 測試set */ public static void testSet(){ List<Integer> list = new ArrayList<>(size); for (Integer i = 0; i < size; i++) { list.add(new Integer(i)); } Set<Integer> temp1 = new HashSet<>(size); //老的 long start=System.currentTimeMillis(); for (Integer i: list) { temp1.add(i); } System.out.println(+System.currentTimeMillis()-start); //同步 long start1=System.currentTimeMillis(); list.stream().collect(Collectors.toSet()); System.out.println(System.currentTimeMillis()-start1); //並發 long start2=System.currentTimeMillis(); list.parallelStream().collect(Collectors.toSet()); System.out.println(System.currentTimeMillis()-start2); }
調試
1、list.map.fiter.map.xx 為鏈式調用,最終調用collect(xx)返回結果
2、分惰性求值和及早求值
3、判斷一個操作是惰性求值還是及早求值很簡單:只需看它的返回值。如果返回值是 Stream,那麼是惰性求值;如果返回值是另一個值或為空,那麼就是及早求值。使用這些操作的理想方式就是形成一個惰性求值的鏈,最後用一個及早求值的操作返回想要的結果。
4、通過peek可以查看每個值,同時能繼續操作流
private static void peekTest() { List<PersonModel> data = Data.getData(); //peek列印出遍歷的每個per data.stream().map(per->per.getName()).peek(p->{ System.out.println(p); }).collect(toList()); }
作者:我是你的小眼睛兒
鏈接:https://www.jianshu.com/p/9fe8632d0bc2
End
