腳本知識的因果推理(CS CL)
- 2020 年 4 月 6 日
- 筆記
什麼時候一系列事件能定義一個日常場景,以及如何從文本中引出這些知識? 在先前的工作中歸納這樣的腳本時依賴一個或另一種形式,以及一個語料庫事件的實例之間的相關性措施。我們從概念和實際意義上都認為,純粹基於相關性的方法是不夠的,相反,通過干預正式定義,我們提出了一種基於事件之間的因果效應的腳本歸納方法。通過人工評估和自動評估,我們發現我們基於因果效應的方法的輸出更符合腳本所代表的直覺。
原文題目:Causal Inference of Script Knowledge
原文:When does a sequence of events define an everyday scenario and how can this knowledge be induced from text? Prior works in inducing such scripts have relied on, in one form or another, measures of correlation between instances of events in a corpus. We argue from both a conceptual and practical sense that a purely correlation-based approach is insufficient, and instead propose an approach to script induction based on the causal effect between events, formally defined via interventions. Through both human and automatic evaluations, we show that the output of our method based on causal effects better matches the intuition of what a script represents
原文作者:Noah Weber
原文地址:https://arxiv.org/abs/2004.01174