【譯】kotlin 協程官方文檔(9)-選擇表達式(實驗階段)(Select Expression (experimental))

最近一直在了解關於kotlin協程的知識,那最好的學習資料自然是官方提供的學習文檔了,看了看後我就萌生了翻譯官方文檔的想法。前後花了要接近一個月時間,一共九篇文章,在這裡也分享出來,希望對讀者有所幫助。個人知識所限,有些翻譯得不是太順暢,也希望讀者能提出意見 協程官方文檔:coroutines-guide 協程官方文檔中文翻譯:coroutines-cn-guide 協程官方文檔中文譯者:leavesC

[TOC]

select 表達式可以同時等待多個掛起函數,並選擇第一個可用的函數來執行

選擇表達式是 kotlinx.coroutines 的一個實驗性的特性,這些 API 預計將在 kotlinx.coroutines 庫的即將到來的更新中衍化,並可能會有突破性的變化

一、Selecting from channels

我們現在有兩個字元串生產者:fizzbuzz 。其中 fizz 每 300 毫秒生成一個字元串「Fizz」:

fun CoroutineScope.fizz() = produce<String> {      while (true) { // sends "Fizz" every 300 ms          delay(300)          send("Fizz")      }  }

接著 buzz 每 500 毫秒生成一個字元串「Buzz!」:

fun CoroutineScope.buzz() = produce<String> {      while (true) { // sends "Buzz!" every 500 ms          delay(500)          send("Buzz!")      }  }

使用掛起函數 receive,我們可以從兩個通道接收其中一個的數據。但是 select 表達式允許我們使用其 onReceive 子句同時從兩者接收:

suspend fun selectFizzBuzz(fizz: ReceiveChannel<String>, buzz: ReceiveChannel<String>) {      select<Unit> { // <Unit> means that this select expression does not produce any result          fizz.onReceive { value ->  // this is the first select clause              println("fizz -> '$value'")          }          buzz.onReceive { value ->  // this is the second select clause              println("buzz -> '$value'")          }      }  }

讓我們運行程式碼 7 次:

import kotlinx.coroutines.*  import kotlinx.coroutines.channels.*  import kotlinx.coroutines.selects.*    fun CoroutineScope.fizz() = produce<String> {      while (true) { // sends "Fizz" every 300 ms          delay(300)          send("Fizz")      }  }    fun CoroutineScope.buzz() = produce<String> {      while (true) { // sends "Buzz!" every 500 ms          delay(500)          send("Buzz!")      }  }    suspend fun selectFizzBuzz(fizz: ReceiveChannel<String>, buzz: ReceiveChannel<String>) {      select<Unit> { // <Unit> means that this select expression does not produce any result          fizz.onReceive { value ->  // this is the first select clause              println("fizz -> '$value'")          }          buzz.onReceive { value ->  // this is the second select clause              println("buzz -> '$value'")          }      }  }    fun main() = runBlocking<Unit> {  //sampleStart      val fizz = fizz()      val buzz = buzz()      repeat(7) {          selectFizzBuzz(fizz, buzz)      }      coroutineContext.cancelChildren() // cancel fizz & buzz coroutines  //sampleEnd  }

運行結果:

fizz -> 'Fizz'  buzz -> 'Buzz!'  fizz -> 'Fizz'  fizz -> 'Fizz'  buzz -> 'Buzz!'  fizz -> 'Fizz'  buzz -> 'Buzz!'

二、Selecting on close

當通道關閉時,select 中的 onReceive 子句會失敗並導致相應的 select 引發異常。我們可以使用 onReceiveOrNull 子句在通道關閉時執行特定操作。下面的示例還顯示了 select 是一個返回其查詢方法結果的表達式:

suspend fun selectAorB(a: ReceiveChannel<String>, b: ReceiveChannel<String>): String =      select<String> {          a.onReceiveOrNull { value ->              if (value == null)                  "Channel 'a' is closed"              else                  "a -> '$value'"          }          b.onReceiveOrNull { value ->              if (value == null)                  "Channel 'b' is closed"              else                  "b -> '$value'"          }      }

注意,onReceiveOrNull 是一個擴展函數,僅可用於具有不可為空元素的通道,這樣就不會意外混淆通道是已關閉還是返回了空值這兩種情況

讓我們將其與生成四次「Hello」字元串的通道 a 和生成四次「World」字元串的通道 b 一起使用:

import kotlinx.coroutines.*  import kotlinx.coroutines.channels.*  import kotlinx.coroutines.selects.*    suspend fun selectAorB(a: ReceiveChannel<String>, b: ReceiveChannel<String>): String =      select<String> {          a.onReceiveOrNull { value ->              if (value == null)                  "Channel 'a' is closed"              else                  "a -> '$value'"          }          b.onReceiveOrNull { value ->              if (value == null)                  "Channel 'b' is closed"              else                  "b -> '$value'"          }      }    fun main() = runBlocking<Unit> {  //sampleStart      val a = produce<String> {          repeat(4) { send("Hello $it") }      }      val b = produce<String> {          repeat(4) { send("World $it") }      }      repeat(8) { // print first eight results          println(selectAorB(a, b))      }      coroutineContext.cancelChildren()  //sampleEnd  }    

這段程式碼的結果非常有趣,所以我們將在細節中分析它:

a -> 'Hello 0'  a -> 'Hello 1'  b -> 'World 0'  a -> 'Hello 2'  a -> 'Hello 3'  b -> 'World 1'  Channel 'a' is closed  Channel 'a' is closed

從中可以觀察到幾點

首先,select 偏向於第一個子句。當同時可以選擇多個子句時,將選擇其中的第一個子句。在這裡,兩個通道都在不斷地產生字元串,因此作為 select 中的第一個子句的通道獲勝。但是,因為我們使用的是無緩衝通道,所以 a 在其發送調用時會不時地被掛起,從而給了 b 發送的機會

第二個觀察結果是,當通道已經關閉時,onReceiveOrNull 將立即被選中

三、Selecting to send

select 表達式有 onSend 子句,可以與 selection 的偏向性質結合使用。 讓我們寫一個整數生產者的例子,當主通道上的消費者跟不上時,它會將其值發送到 side 通道:

fun CoroutineScope.produceNumbers(side: SendChannel<Int>) = produce<Int> {      for (num in 1..10) { // produce 10 numbers from 1 to 10          delay(100) // every 100 ms          select<Unit> {              onSend(num) {} // Send to the primary channel              side.onSend(num) {} // or to the side channel          }      }  }

消費者將會非常緩慢,每個數值處理需要 250 毫秒:

import kotlinx.coroutines.*  import kotlinx.coroutines.channels.*  import kotlinx.coroutines.selects.*    fun CoroutineScope.produceNumbers(side: SendChannel<Int>) = produce<Int> {      for (num in 1..10) { // produce 10 numbers from 1 to 10          delay(100) // every 100 ms          select<Unit> {              onSend(num) {} // Send to the primary channel              side.onSend(num) {} // or to the side channel          }      }  }    fun main() = runBlocking<Unit> {  //sampleStart      val side = Channel<Int>() // allocate side channel      launch { // this is a very fast consumer for the side channel          side.consumeEach { println("Side channel has $it") }      }      produceNumbers(side).consumeEach {          println("Consuming $it")          delay(250) // let us digest the consumed number properly, do not hurry      }      println("Done consuming")      coroutineContext.cancelChildren()  //sampleEnd  }

讓我們看看會發生什麼:

Consuming 1  Side channel has 2  Side channel has 3  Consuming 4  Side channel has 5  Side channel has 6  Consuming 7  Side channel has 8  Side channel has 9  Consuming 10  Done consuming

四、Selecting deferred values

延遲值可以使用 onAwait 子句來查詢。讓我們啟動一個非同步函數,它在隨機的延遲後會延遲返回字元串:

fun CoroutineScope.asyncString(time: Int) = async {      delay(time.toLong())      "Waited for $time ms"  }

讓我們隨機啟動十餘個非同步函數,每個都延遲隨機的時間

fun CoroutineScope.asyncStringsList(): List<Deferred<String>> {      val random = Random(3)      return List(12) { asyncString(random.nextInt(1000)) }  }

現在,main 函數等待它們中的第一個完成,並統計仍處於活動狀態的延遲值的數量。注意,我們在這裡使用 select 表達式事實上是一種 Kotlin DSL,因此我們可以使用任意程式碼為它提供子句。在本例中,我們遍歷一個延遲值列表,為每個延遲值提供 onAwait 子句。

import kotlinx.coroutines.*  import kotlinx.coroutines.selects.*  import java.util.*    fun CoroutineScope.asyncString(time: Int) = async {      delay(time.toLong())      "Waited for $time ms"  }    fun CoroutineScope.asyncStringsList(): List<Deferred<String>> {      val random = Random(3)      return List(12) { asyncString(random.nextInt(1000)) }  }    fun main() = runBlocking<Unit> {  //sampleStart      val list = asyncStringsList()      val result = select<String> {          list.withIndex().forEach { (index, deferred) ->              deferred.onAwait { answer ->                  "Deferred $index produced answer '$answer'"              }          }      }      println(result)      val countActive = list.count { it.isActive }      println("$countActive coroutines are still active")  //sampleEnd  }

輸出結果:

Deferred 4 produced answer 'Waited for 128 ms'  11 coroutines are still active

五、Switch over a channel of deferred values

現在我們來編寫一個通道生產者函數,它消費一個產生延遲字元串的通道,並等待每個接收的延遲值,但它只在下一個延遲值到達或者通道關閉之前處於運行狀態。此示例將 onReceiveOrNull 和 onAwait 子句放在同一個 select 中:

fun CoroutineScope.switchMapDeferreds(input: ReceiveChannel<Deferred<String>>) = produce<String> {      var current = input.receive() // start with first received deferred value      while (isActive) { // loop while not cancelled/closed          val next = select<Deferred<String>?> { // return next deferred value from this select or null              input.onReceiveOrNull { update ->                  update // replaces next value to wait              }              current.onAwait { value ->                  send(value) // send value that current deferred has produced                  input.receiveOrNull() // and use the next deferred from the input channel              }          }          if (next == null) {              println("Channel was closed")              break // out of loop          } else {              current = next          }      }  }

為了測試它,我們將用一個簡單的非同步函數,它在特定的延遲後返回特定的字元串:

fun CoroutineScope.asyncString(str: String, time: Long) = async {      delay(time)      str  }

main 函數只是啟動一個協程來列印 switchMapDeferreds 的結果並向它發送一些測試數據:

import kotlinx.coroutines.*  import kotlinx.coroutines.channels.*  import kotlinx.coroutines.selects.*    fun CoroutineScope.switchMapDeferreds(input: ReceiveChannel<Deferred<String>>) = produce<String> {      var current = input.receive() // start with first received deferred value      while (isActive) { // loop while not cancelled/closed          val next = select<Deferred<String>?> { // return next deferred value from this select or null              input.onReceiveOrNull { update ->                  update // replaces next value to wait              }              current.onAwait { value ->                  send(value) // send value that current deferred has produced                  input.receiveOrNull() // and use the next deferred from the input channel              }          }          if (next == null) {              println("Channel was closed")              break // out of loop          } else {              current = next          }      }  }    fun CoroutineScope.asyncString(str: String, time: Long) = async {      delay(time)      str  }    fun main() = runBlocking<Unit> {  //sampleStart      val chan = Channel<Deferred<String>>() // the channel for test      launch { // launch printing coroutine          for (s in switchMapDeferreds(chan))              println(s) // print each received string      }      chan.send(asyncString("BEGIN", 100))      delay(200) // enough time for "BEGIN" to be produced      chan.send(asyncString("Slow", 500))      delay(100) // not enough time to produce slow      chan.send(asyncString("Replace", 100))      delay(500) // give it time before the last one      chan.send(asyncString("END", 500))      delay(1000) // give it time to process      chan.close() // close the channel ...      delay(500) // and wait some time to let it finish  //sampleEnd  }

程式碼的執行結果:

BEGIN  Replace  END  Channel was closed