研究具有奇異性的DAE系統的臨界清除時間靈敏度(CS SY)
- 2020 年 3 月 27 日
- 筆記
標準電力系統模型是參數相關的微分代數方程(DAE)類型。由於存在瞬態事件,電壓崩潰可能作為瞬態負載流解的分支出現,該分支由系統軌跡在失去電壓因果關係的狀態空間中到達奇異表面來表示。一個故障預計會導致電壓崩潰,需要採取預防性控制決策,如AVR設置的更改,以提高系統的穩定性。在這方面,了解臨界清除時間(CCT)對可控系統參數的敏感性將有很大的幫助。DAE系統的擬穩定邊界比ODE系統更為複雜,除了不穩定平衡點(UEP)和周期軌道外,奇異性也是使問題具有挑戰性的重要因素。穩定邊界由若干動態不同的分量組成。在本文中,我們推導出臨界故障軌跡與奇異面相交時的CCT靈敏度表達式,奇異面本身就是構成穩定邊界的一個元件。為了獲得直觀的理解,本文對一個小型測試系統的測試結果進行了說明。
原文題目:Towards Critical Clearing Time Sensitivity for DAE Systems with Singularity
原文:Standard power system models are parameter dependent differential-algebraic equation (DAE) type. Following a transient event, voltage collapse can occur as a bifurcation of the transient load flow solutions which is marked by the system trajectory reaching a singular surface in state space where the voltage causality is lost. If a fault is expected to cause voltage collapse, preventive control decisions such as changes in AVR settings need to be taken in order to get enhance the system stability. In this regard, the knowledge of sensitivity of critical clearing time (CCT) to controllable system parameters can be of great help. The quasi-stability boundary of DAE systems is more complicated than ODE systems where in addition to unstable equilibrium points (UEP) and periodic orbits, singularity plays an important role making the problem challenging. The stability boundary is then made up of a number of dynamically distinct components. In the present work, we derive the expression for CCT sensitivity for the phenomenon where the critical fault-on trajectory intersects the singular surface itself which is one such component forming the stability boundary. The results are illustrated for a small test system in order to gain visual insights.
原文作者:Chetan Mishra, Chen Wang, Xin Xu, Virgilio A. Centeno
原文地址:http://cn.arxiv.org/abs/2002.08999