CTR學習筆記&程式碼實現1-深度學習的前奏LR->FFM

  • 2020 年 3 月 16 日
  • 筆記

CTR學習筆記系列的第一篇,總結在深度模型稱王之前經典LR,FM, FFM模型,這些經典模型後續也作為組件用於各個深度模型。模型分別用自定義Keras Layer和estimator來實現,哈哈一個是舊愛一個是新歡。特徵工程依賴feature_column實現,這裡做的比較簡單在後面的深度模型再好好搞。完整程式碼在這裡https://github.com/DSXiangLi/CTR

問題定義

CTR本質是一個二分類問題,$X in R^N $是用戶和廣告相關特徵, (Y in (0,1))是每個廣告是否被點擊,基礎模型就是一個簡單的Logistics Regression
[ P(Y=1) = frac{1}{1+ exp{(w_0 + sum_{i=1}^Nw_ix_i)}} ]

考慮在之後TF框架里logistics可以簡單用activation來表示,我們把核心的部分簡化為以下
[ y(x) = w_0 + sum_{i=1}^Nw_ix_i ]

LR模型

2010年之前主流的CTR模型通常是最簡單的logistics regression,模型可解釋性強,工程上部署簡單快捷。但最大的問題是依賴於大量的手工特徵工程。

剛接觸特徵工程的同學可能會好奇為什麼需要計算組合特徵?

最開始我只是簡單認為越細粒度的聚合特徵Bias越小。接觸了因果推理後,我覺得更適合用Simpson Paradox里的Confounder Bias來解釋,不同聚合特徵之間可能會相悖,例如各個年齡段的男性點擊率均低於女性,但整體上男性的點擊率高於女性。感興趣的可以看看這篇部落格因果推理的春天系列序 – 數據挖掘中的Confounding, Collidar, Mediation Bias

如果即想簡化特徵工程,又想加入特徵組合,肯定就會想到下面的暴力特徵組合方式。這個也被稱作POLY2模型
[ y(x) = w_0 + sum_{i=1}^N w_ix_i + sum_{i=1}^N sum_{j=i+1}^N w_{i,j} x_ix_j ]

但上述(w_{i,j})需要學習(frac{n(n-1)}{2})個參數,一方面複雜度高,另一方面對高維稀疏特徵會出現大量(w_{i,j})是0的情況,模型無法學到樣本中未曾出現的特徵組合pattern,模型泛化性差。

於是降低複雜度,自動選擇有效特徵組合,以及模型泛化這三點成為後續主要的改進的方向。

GBDT+LR模型

2014年Facebook提出在GBDT疊加LR的方法,敲開了特徵工程模型化的大門。GBDT輸出的不是預測概率,而是每一個樣本落在每一顆子樹哪個葉節點的一個0/1矩陣。在只保留和target相關的有效特徵組合的同時,避免了手工特徵組合需要的業務理解和人工成本。

相較特徵組合,我更喜歡把GBDT輸出的特徵向量,理解為根據target,對樣本進行了聚類/降維,輸出的是該樣本所屬的幾個特定人群組合,每一棵子樹都對應一種類型的人群組合。

但是!GBDT依舊存在泛化問題,因為所有葉節點的選擇都依賴於訓練樣本,並且GBDT在離散特徵上效果比較有限。同時也存在經過GBDT變換得到的特徵依舊是高維稀疏特徵的問題。

FM模型

2010年Rendall提出的因子分解機模型(FM)為降低計算複雜度,為增加模型泛化能力提供了思路

原理

FM模型將上述暴力特徵組合直接求解整個權重矩(w_ij in R^{N*N}),轉化為求解權重矩陣的隱向量(V in R^{N*k}),這一步會大大增加模型泛化能力,因為權重矩陣不再完全依賴於樣本中的特定特徵組合,而是可以通過特徵間的相關關係間接得到。 同時隱向量把模型需要學習的參數數量從(frac{n(n-1)}{2})降低到(nk)
[ begin{align} y(x) & = w_0 + sum_{i=1}^Nw_i x_i + sum_{i=1}^N sum_{j=i+1}^N w_{i,j} x_ix_j\ &= w_0 + sum_{i=1}^Nw_i x_i + sum_{i=1}^N sum_{j=i+1}^N <v_i,v_j> x_ix_j\ end{align} ]
同時FM通過下面的trick,把擬合過程的計算複雜度從(O(n^2k))降低到線性複雜度(O(nk))
[ begin{align} &sum_{i=1}^N sum_{j=i+1}^N<v_i,v_j> x_ix_j \ = &frac{1}{2}( sum_{i=1}^N sum_{j=1}^N<v_i,v_j> x_ix_j – sum_{i=1}^N<v_i,v_i>x_ix_i)\ = &frac{1}{2}( sum_{i=1}^N sum_{j=1}^Nsum_{f=1}^K v_{if}v_{jf} x_ix_j – sum_{i=1}^Nsum_{f=1}^Kv_{if}^2x_i^2)\ = &frac{1}{2}sum_{f=1}^K( sum_{i=1}^N sum_{j=1}^N v_{if}v_{jf} x_ix_j – sum_{i=1}^Nv_{if}^2x_i^2)\ = &frac{1}{2}sum_{f=1}^K( (sum_{i=1}^N v_{ij}x_i)^2 – sum_{i=1}^Nv_{if}^2x_i^2)\ = &text{square_of_sum} -text{sum_of_square} end{align} ]

程式碼實現-自定義Keras Layer

class FM_Layer(Layer):      """      Input:          factor_dim: latent vector size          input_shape: raw feature size          activation      output:          FM layer output      """      def __init__(self, factor_dim, activation = None, **kwargs):          self.factor_dim = factor_dim          self.activation = activations.get(activation) # if None return linear, else return function of identifier          self.InputSepc = InputSpec(ndim=2) # Specifies input layer attribute. one Inspec for each input            super(FM_Layer,self).__init__(**kwargs)        def build(self, input_shape):          """          input:              tuple of input_shape          output:              w: linear weight              v: latent vector              b: linear Bias          func:              define all the necessary variable here          """          assert len(input_shape) >=2          input_dim = int(input_shape[-1])            self.w = self.add_weight(name = 'w0', shape = (input_dim, 1),                                    initializer = 'glorot_uniform',                                    trainable = True)            self.b = self.add_weight(name = 'bias', shape = (1, ),                                    initializer = 'zeros',                                    trainable = True)            self.v = self.add_weight(name = 'hidden_vector', shape = (input_dim, self.factor_dim),                                   initializer = 'glorot_uniform',                                    trainable = True)            super(FM_Layer, self).build(input_shape)# set self.built=True        def call(self, x):          """          input:              x(previous layer output)          output:              core calculation of the FM layer          func:              core calculcation of layer goes here          """          linear_term = K.dot(x, self.w) + self.b            # Embedding之和,Embedding內積: (1, input_dim) * (input_dim, factor_dim) = (1, factor_dim)          sum_square = K.pow(K.dot(x, self.v),2)          square_sum = K.dot(K.pow(x, 2), K.pow(self.v, 2))            # (1, factor_dim) -> (1)          quad_term = K.mean( (sum_square - square_sum), axis=1, keepdims = True) #            output = self.activation((linear_term+quad_term))            return output        def compute_output_shape(self, input_shape):          # tf.keras回傳input_shape是tf.dimension而不是tuple, 所以要cast成int          return (int(input_shape[0]), self.output_dim)  

FM和MF的關係

Factorizaton Machine 和Matrix Factorization聽起來就很像,MF也確實是FM的一個特例。MF是通過對矩陣進行因子分解得到隱向量,但因為只適用於矩陣所以特徵只能是二維,常見的是(user_id, item_id)組合。而同樣是得到隱向量,FM將矩陣展平把離散特徵都做one-hot,因此支援任意數量的輸入特徵。

FM和Embedding的關係

Embedding最常見於NLP中,把詞的高維稀疏特徵映射到低維矩陣embedding中,然後用交互函數,例如向量內積來表示詞與詞之間的相似度。而實際上FM計算的隱向量也是一種Embedding 的擬合方法,並且限制了只用向量內積作為交互函數。上述(X*V in R^{K})得到的就是Embedding向量本身。

FFM

2015年提出的FFM模型在FM的基礎上加入了Field的概念

原理

上述FM學到的權重矩陣V是每個特徵對應一個隱向量,兩特徵組合通過隱向量內積的形式來表達。FFM提出同一個特徵和不同Field的特徵組合應該有不同的隱向量,因此(V in R^{N*K})變成 (V in R^{N*F*K})其中F是特徵所屬Field的個數。以下數據中country,Data,Ad_type就是Field((F=3))

FM兩特徵交互的部分被改寫為以下,因此需要學習的參數數量從nk變為nf*k。並且在擬合過程中無法使用上述trick因此複雜度從FM的(O(nk))上升為(O(kn^2))

[ begin{align} sum_{i=1}^N sum_{j=i+1}^N<v_i,v_j> x_ix_j to &sum_{i=1}^N sum_{j=i+1}^N<v_{i,f_j},v_{j,f_i}> x_ix_j end{align} ]

程式碼實現-自定義model_fn

def model_fn(features, labels, mode, params):      """      Field_aware factorization machine for 2 classes classification      """      feature_columns, field_dict = build_features()        field_dim = len(np.unique(list(field_dict.values())))        input = tf.feature_column.input_layer(features, feature_columns)        input_dim = input.get_shape().as_list()[-1]        with tf.variable_scope('linear'):          init = tf.random_normal( shape = (input_dim,2) )          w = tf.get_variable('w', dtype = tf.float32, initializer = init, validate_shape = False)          b = tf.get_variable('b', shape = [2], dtype= tf.float32)            linear_term = tf.add(tf.matmul(input,w), b)          tf.summary.histogram( 'linear_term', linear_term )        with tf.variable_scope('field_aware_interaction'):          init = tf.truncated_normal(shape = (input_dim, field_dim, params['factor_dim']))          v = tf.get_variable('v', dtype = tf.float32, initializer = init, validate_shape = False)            interaction_term = tf.constant(0, dtype =tf.float32)          # iterate over all the combination of features          for i in range(input_dim):              for j in range(i+1, input_dim):                  interaction_term += tf.multiply(                      tf.reduce_mean(tf.multiply(v[i, field_dict[j],: ], v[j, field_dict[i],:])) ,                      tf.multiply(input[:,i], input[:,j])                  )          interaction_term = tf.reshape(interaction_term, [-1,1])          tf.summary.histogram('interaction_term', interaction_term)        with tf.variable_scope('output'):          y = tf.math.add(interaction_term, linear_term)          tf.summary.histogram( 'output', y )        if mode == tf.estimator.ModeKeys.PREDICT:          predictions = {              'predict_class': tf.argmax(tf.nn.softmax(y), axis=1),              'prediction_prob': tf.nn.softmax(y)          }            return tf.estimator.EstimatorSpec(mode = tf.estimator.ModeKeys.PREDICT,                                            predictions = predictions)        cross_entropy = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits( labels=labels, logits=y ))        if mode == tf.estimator.ModeKeys.TRAIN:          optimizer = tf.train.AdamOptimizer(learning_rate = params['learning_rate'])          train_op = optimizer.minimize(cross_entropy,                                       global_step = tf.train.get_global_step())            return tf.estimator.EstimatorSpec(mode, loss = cross_entropy, train_op = train_op)      else:          eval_metric_ops = {              'accuracy': tf.metrics.accuracy(labels = labels,                                              predictions = tf.argmax(tf.nn.softmax(y), axis=1)),              'auc': tf.metrics.auc(labels = labels ,                                    predictions = tf.nn.softmax(y)[:,1]),              'pr': tf.metrics.auc(labels = labels,                                   predictions = tf.nn.softmax(y)[:,1],                                   curve = 'PR')          }          return tf.estimator.EstimatorSpec(mode, loss = cross_entropy, eval_metric_ops = eval_metric_ops)  

參考資料

  1. S. Rendle, 「Factorization machines,」 in Proceedings of IEEE International Conference on Data Mining (ICDM), pp. 995–1000, 2010
  2. Yuchin Juan,Yong Zhuang,Wei-Sheng Chin,Field-aware Factorization Machines for CTR Prediction。
  3. 盤點前深度學習時代阿里、Google、Facebook的CTR預估模型
  4. 前深度學習時代CTR預估模型的演化之路:從LR到FFM
  5. 推薦系統召回四模型之:全能的FM模型
  6. 主流CTR預估模型的演化及對比
  7. 深入FFM原理與實踐