CPU實時幀率超過100+,嵌入式端首選的人臉檢測庫推薦

  • 2020 年 3 月 10 日
  • 筆記

開源人臉庫調用嘗試

基於卷積神經網路的人臉檢測庫,實現了硬體指令加速,純C++ SDK介面,不依賴第三方庫與介面,可以獨立使用,同時也提供了模型文件下載,之前的版本是caffe模型,最新版本支援pytorch。現已開源!支援最小檢測人臉10×10大小

OpenCV DNN可以直接調用訓練好的caffe模型文件,實現實時人臉檢測,演示程式碼如下:

 1#include <opencv2/opencv.hpp>   2#include <opencv2/dnn.hpp>   3#include <iostream>   4   5using namespace cv;   6using namespace cv::dnn;   7using namespace std;   8   9const size_t inWidth = 300;  10const size_t inHeight = 300;  11const double inScaleFactor = 0.007843;  12const Scalar meanVal(104.0, 117, 123.0);  13const float confidence = 0.5;  14  15int main(int argc, char** argv) {  16    string model = "D:/projects/models/yufacedetectnet-open-v2.caffemodel";  17    string config = "D:/projects/models/yufacedetectnet-open-v2.prototxt";  18    // read network  19    Net net = readNetFromCaffe(config, model);  20    VideoCapture cap(0);  21    Mat frame;  22    while (true) {  23        bool ret = cap.read(frame);  24        if (!ret) {  25            break;  26        }  27        int64 start = getTickCount();  28        Mat input_data = blobFromImage(frame, inScaleFactor, Size(320, 240), meanVal, false, false);  29        net.setInput(input_data);  30  31        // 人臉檢測  32        Mat detection = net.forward();  33        Mat detectionMat(detection.size[2], detection.size[3], CV_32F, detection.ptr<float>());  34  35        // 推斷時間  36        vector<double> layersTimings;  37        double freq = getTickFrequency() / 1000;  38        double time = net.getPerfProfile(layersTimings) / freq;  39  40        ostringstream ss;  41        for (int i = 0; i < detectionMat.rows; i++)  42        {  43            // 置信度 0~1之間  44            float score = detectionMat.at<float>(i, 2);  45            if (score > confidence)  46            {  47                int xLeftBottom = static_cast<int>(detectionMat.at<float>(i, 3) * frame.cols);  48                int yLeftBottom = static_cast<int>(detectionMat.at<float>(i, 4) * frame.rows);  49                int xRightTop = static_cast<int>(detectionMat.at<float>(i, 5) * frame.cols);  50                int yRightTop = static_cast<int>(detectionMat.at<float>(i, 6) * frame.rows);  51  52                Rect object((int)xLeftBottom, (int)yLeftBottom,  53                    (int)(xRightTop - xLeftBottom),  54                    (int)(yRightTop - yLeftBottom));  55  56                rectangle(frame, object, Scalar(0, 255, 0));  57  58                ss << score;  59                String conf(ss.str());  60                String label = "Face: " + conf;  61                int baseLine = 0;  62                Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);  63                rectangle(frame, Rect(Point(xLeftBottom, yLeftBottom - labelSize.height),  64                    Size(labelSize.width, labelSize.height + baseLine)),  65                    Scalar(255, 255, 255), FILLED);  66                putText(frame, label, Point(xLeftBottom, yLeftBottom),  67                    FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 0, 0));  68            }  69        }  70        float fps = getTickFrequency() / (getTickCount() - start);  71        ss.str("");  72        ss << "FPS: " << fps << " ; inference time: " << time << " ms";  73        putText(frame, ss.str(), Point(20, 20), 0, 0.75, Scalar(0, 0, 255), 2, 8);  74        imshow("dnn_face_detection", frame);  75        if (waitKey(1) >= 0) break;  76    }  77    waitKey(0);  78    return 0;  79}

運行效果如下:

Github地址

https://github.com/ShiqiYu/libfacedetection