威少爺的投籃命中率
- 2020 年 3 月 3 日
- 筆記
資深籃球評論員蘇群老師的公眾號今天分享的文章是《威少投籃慘不忍睹,但他把MVP給喬治》,其中用表格形式展示了威少爺11年職業生涯出手距離投籃命中率和出手距離所佔比重的變化,個人認為這類數據用折線圖看起來更為直觀,本文記錄整理蘇群老師文章中用到的數據後使用ggplot2製作折線圖的程式碼
數據整理
不同出手距離的命中率

不同出手距離比重

繪圖
1、 出手距離與命中率
library(ggplot2) library(reshape2) df1<-read.table("clipboard",header=T) colnames(df1)<-c("Season","0~1","1~3","3~5","5~7","7~") mydata1<-melt(df1,id.vars = "Season",variable.name = "shooting_distance",value.name = "Percentage") ggplot(mydata1,aes(x=Season,y=Percentage,group=shooting_distance,color=shooting_distance))+ geom_line()+scale_color_brewer(name="Shooting Distance(m)",palette="Set1")+ geom_point()+theme_bw()+labs(x="")+ scale_y_continuous(breaks = seq(0,1000,by=100),labels=seq(0,100,by=10), limits = c(0,1000))+ theme(legend.key=element_blank(), legend.background = element_blank(), axis.text.x = element_text(angle=90,vjust=0.5))

從上圖可以看出1-5米內出手命中率近兩個賽季明顯下降,1米內出手命中率生涯最佳
2、出手距離比例
df2<-read.table("clipboard",header=T) df2 mydata2<-melt(df2,id.vars = "Season",variable.name = "shooting_distance",value.name = "Proportion") mydata2$shooting_distance<-factor(mydata2$shooting_distance,levels=c("E","D","C","B","A")) ggplot(mydata2,aes(x=Season,y=Proportion,fill=shooting_distance))+ geom_bar(stat="identity")+theme_bw()+ scale_fill_brewer(name="Shooting Distance(m)",palette="Set1", breaks=c("E","D","C","B","A"), labels=c("7~","5~7","3~5","1~3","~1"))+ scale_y_continuous(breaks = seq(0,1000,by=100),labels=seq(0,10,by=1), limits = c(0,1000))+ theme(axis.title = element_blank(), axis.text.x = element_text(angle=90,vjust=0.5))

由上圖可以看出,威少本賽季較上個賽季的進攻方式的變化:略微增加了三分球,減少了長兩分,其他沒有明顯變化
參考文獻
- R語言ggplot2包畫折線圖
- Legends(ggplot2)
- ggplot2 legend : Easy steps to change the position and the appearance of a graph legend in R software