二叉樹中最大的二叉搜索子樹的大小

二叉樹中最大的二叉搜索子樹的大小

作者:Grey

原文地址:

部落格園:二叉樹中最大的二叉搜索子樹的大小

CSDN:二叉樹中最大的二叉搜索子樹的大小

題目描述

求一個二叉樹中的最大二叉搜索子樹的大小

題目鏈接見:牛客-找到二叉樹中的最大搜索二叉子樹

思路1

判斷一棵樹是否是二叉搜索樹,就是要判斷一棵樹的中序遍歷結果是否嚴格遞增,即

// 判斷以 head 為頭的樹是否為二叉搜索樹,如果是,返回節點個數,如果不是,返回0
    public static int getBSTSize(TreeNode head) {
        if (head == null) {
            return 0;
        }
        ArrayList<TreeNode> arr = new ArrayList<>();
        in(head, arr);
        for (int i = 1; i < arr.size(); i++) {
            if (arr.get(i).value <= arr.get(i - 1).value) {
                return 0;
            }
        }
        return arr.size();
    }

// 收集中序遍歷結果
    public static void in(TreeNode head, ArrayList<TreeNode> arr) {
        if (head == null) {
            return;
        }
        in(head.left, arr);
        arr.add(head);
        in(head.right, arr);
    }

有了getBSTSize方法,主函數調用

    public static int maxSubBSTSize1(TreeNode head) {
        if (head == null) {
            return 0;
        }
        // 以 head 為頭的樹如果是二叉搜索樹,直接返回
        int h = getBSTSize(head);
        if (h != 0) {
            // 以head為頭的樹就是二叉搜索樹,直接返回其大小
            return h;
        }
        // 遞歸調用,獲取左邊的最大二叉搜索樹的大小和右邊最大二叉搜索樹大小
        // 兩者中較大那個,就是答案
        return Math.max(maxSubBSTSize1(head.left), maxSubBSTSize1(head.right));
    }

思路1的完整程式碼如下

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.HashMap;

// //www.nowcoder.com/questionTerminal/380d49d7f99242709ab4b91c36bf2acc
public class Main {

    public static class TreeNode {
        public int value;
        public TreeNode left;
        public TreeNode right;

        public TreeNode(int data) {
            this.value = data;
        }
    }

    public static int getBSTSize(TreeNode head) {
        if (head == null) {
            return 0;
        }
        ArrayList<TreeNode> arr = new ArrayList<>();
        in(head, arr);
        for (int i = 1; i < arr.size(); i++) {
            if (arr.get(i).value <= arr.get(i - 1).value) {
                return 0;
            }
        }
        return arr.size();
    }

    public static void in(TreeNode head, ArrayList<TreeNode> arr) {
        if (head == null) {
            return;
        }
        in(head.left, arr);
        arr.add(head);
        in(head.right, arr);
    }

    public static int maxSubBSTSize1(TreeNode head) {
        if (head == null) {
            return 0;
        }
        int h = getBSTSize(head);
        if (h != 0) {
            return h;
        }
        return Math.max(maxSubBSTSize1(head.left), maxSubBSTSize1(head.right));
    }

    public static void main(String[] args) throws Exception {
        BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
        HashMap<Integer, TreeNode> map = new HashMap<>();
        String[] params = br.readLine().split(" ");
        int n = Integer.parseInt(params[0]);
        int rootVal = Integer.parseInt(params[1]);
        // 構建二叉樹
        TreeNode root = new TreeNode(rootVal);
        map.put(rootVal, root);
        for (int i = 0; i < n; i++) {
            params = br.readLine().split(" ");
            int nodeVal = Integer.parseInt(params[0]);
            int leftVal = Integer.parseInt(params[1]);
            int rightVal = Integer.parseInt(params[2]);
            TreeNode node = map.get(nodeVal);
            if (leftVal != 0) {
                node.left = new TreeNode(leftVal);
                map.put(leftVal, node.left);
            }
            if (rightVal != 0) {
                node.right = new TreeNode(rightVal);
                map.put(rightVal, node.right);
            }
        }
        System.out.println(maxSubBSTSize1(root));
    }

}

但是這個方法時間複雜度太高O(N^2)

思路2

使用二叉樹的遞歸套路來解,

第一步,定義 Info

    public static class Info {
        public Info(int maxSubBSTSize, int max, int min, boolean isBST) {
            this.maxSubBSTSize = maxSubBSTSize;
            this.isBST = isBST;
            this.max = max;
            this.min = min;
        }
        // 二叉樹的最大二叉搜索子樹大小
        private int maxSubBSTSize;
        // 二叉樹的最大值是多少
        private int max;
        // 二叉樹的最小值是多少
        private int min;
        // 二叉樹是否是二叉搜索樹
        private boolean isBST;
    }

第二步,定義遞歸函數

static Info p(TreeNode head);

第三步,分析可能性

如果null == head 直接返回 null;

如果null != head,則獲取左樹提供的資訊Info left和右樹提供的資訊Info right

        Info left = p(head.left);
        Info right = p(head.right);

然後根據左樹的 Info 和右樹的 Info 整合出 head 為頭的樹的 Info 資訊返回,核心程式碼和注釋資訊如下:

        // 到這裡,說明 head != null,所以maxSize至少是1
        int maxSize = 1;
        // max 和 min 先預置為 head.value
        int max = head.value;
        int min = head.value;
        // isBST 先設置為 true
        boolean isBST = true;
        if (left != null) {
            // 左樹資訊不為空,左樹的最大值要比 head 值小,且左樹要是BST,以head為頭的樹在不考慮右樹的情況下,就是 true
            // 否則為 false
            isBST = left.isBST && left.max < head.value;
            // 左樹的 max 可能會推高 head為頭的樹的max值
            max = Math.max(left.max, max);
            // 左樹的 min 可能會推低 head為頭的樹的min值
            min = Math.min(left.min, min);
            maxSize = Math.max(maxSize, left.maxSubBSTSize);
        }
        if (right != null) {
            // 與left != null 分支注釋類似
            isBST = isBST && right.isBST && right.min > head.value;
            max = Math.max(right.max, max);
            min = Math.min(right.min, min);
            maxSize = Math.max(maxSize, right.maxSubBSTSize);
        }
        if (isBST) {
            maxSize = Math.max((left != null ? left.maxSubBSTSize : 0) + (right != null ? right.maxSubBSTSize : 0) + 1, maxSize);
        }

思路2完整程式碼如下

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.HashMap;
 
public class Main {

    public static class TreeNode {
        public int value;
        public TreeNode left;
        public TreeNode right;

        public TreeNode(int data) {
            this.value = data;
        }
    }

    public static int maxSubBSTSize2(TreeNode head) {
        if (head == null) {
            return 0;
        }
        return p(head).maxSubBSTSize;
    }

    public static Info p(TreeNode head) {
        if (head == null) {
            return null;
        }
        Info left = p(head.left);
        Info right = p(head.right);
        int maxSize = 1;
        int max = head.value;
        int min = head.value;
        boolean isBST = true;
        if (left != null) {
            isBST = left.isBST && left.max < head.value;
            max = Math.max(left.max, max);
            min = Math.min(left.min, min);
            maxSize = Math.max(maxSize, left.maxSubBSTSize);
        }
        if (right != null) {
            isBST = isBST && right.isBST && right.min > head.value;
            max = Math.max(right.max, max);
            min = Math.min(right.min, min);
            maxSize = Math.max(maxSize, right.maxSubBSTSize);
        }
        if (isBST) {
            maxSize = Math.max((left != null ? left.maxSubBSTSize : 0) + (right != null ? right.maxSubBSTSize : 0) + 1, maxSize);
        }
        return new Info(maxSize, max, min, isBST);
    }

    public static class Info {
        public Info(int maxSubBSTSize, int max, int min, boolean isBST) {
            this.maxSubBSTSize = maxSubBSTSize;
            this.isBST = isBST;
            this.max = max;
            this.min = min;
        }

        private int maxSubBSTSize;
        private int max;
        private int min;
        private boolean isBST;
    }

    public static void main(String[] args) throws Exception {
        BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
        HashMap<Integer, TreeNode> map = new HashMap<>();
        String[] params = br.readLine().split(" ");
        int n = Integer.parseInt(params[0]);
        int rootVal = Integer.parseInt(params[1]);
        // 構建二叉樹
        TreeNode root = new TreeNode(rootVal);
        map.put(rootVal, root);
        for (int i = 0; i < n; i++) {
            params = br.readLine().split(" ");
            int nodeVal = Integer.parseInt(params[0]);
            int leftVal = Integer.parseInt(params[1]);
            int rightVal = Integer.parseInt(params[2]);
            TreeNode node = map.get(nodeVal);
            if (leftVal != 0) {
                node.left = new TreeNode(leftVal);
                map.put(leftVal, node.left);
            }
            if (rightVal != 0) {
                node.right = new TreeNode(rightVal);
                map.put(rightVal, node.right);
            }
        }
        // System.out.println(maxSubBSTSize1(root));
        System.out.println(maxSubBSTSize2(root));
    }

}

時間複雜度O(N)

更多

演算法和數據結構筆記