AAAI2020推薦系統論文集錦
- 2020 年 2 月 14 日
- 筆記
前言
最近整理了AAAI2020會議中關於推薦系統的論文,同時通過程式碼分析了下所接收論文的標題,發現了一些研究的熱點以及趨勢。
概述
通過對所接收的1590篇論文的標題進行分析,發現以下結論:
- 大部分的論文所用到的技術多為Neural Network(128)相關的;
- 大部分的文獻聚焦在以下幾個關鍵技術。比如Embedding(51), Attention(49), Adversarial(74), Reinforcement(49), Convolutional(42), Recurrent(16)等;
- 主要面向的研究任務有分類、回歸、識別、追蹤等,其中推薦的比重所佔也不小。比如Classification(50), Regression(15), Prediction(39), Recognition(52), Tracking(20), Segmentation(28), Translation(32), Recommendation(21)等;
- 所研究的數據不僅關注準確性,關注指標更加多樣化。比如Efficient(59), Robust(30), Dynamic(29), Adaptive(29), Hierarchical(26),;
- 論文研究所用到的數據以圖為主,影片、影像、文本比重相當。比如Graph(128), Video(35), Image(59), Heterogeneous(16), Text(35), Social(20)。
*其中括弧里的數字表示出現次數。
推薦相關的文章
特此從1590篇論文中篩選出與推薦相關的27篇文章供大家提前閱讀,提前領略牛人的最新想法。
- PEIA: Personality and Emotion Integrated Attentive Model for Music Recommendation on Social Media.
- Where to Go Next: Modeling Long-and Short‐Term User Preferences for Point-of‐Interest Recommendation.
- A Knowledge-Aware Attentional Reasoning Network for Recommendation.
- Enhancing Personalized Trip Recommendation with Attractive Routes.
- Efficient Heterogeneous Collaborative Filtering without Negative Sampling for Recommendation.
- An Attentional Recurrent Neural Network for Personalized Next Location Recommendation.
- Memory Augmented Graph Neural Networks for Sequential Recommendation.
- Leveraging Title-Abstract Attentive Semantics for Paper Recommendation.
- Diversified Interactive Recommendation with Implicit Feedback.
- Question-driven Purchasing Propensity Analysis for Recommendation.
- Sequential Recommendation with Relation-Aware Kernelized Self-Attention.
- Incremental Fairness in Two‐Sided Market Platforms: On Smoothly Updating Recommendations.
- Attention‐guide Walk Model in Heterogeneous Information Network for Multi-style Recommendation.
- Table2Analysis: Modeling and Recommendation of Common Analysis Patterns for Multi-Dimensional Data.
- Symmetric Metric Learning with Adaptive Margin for Recommendation.
- Multi-Feature Discrete Collaborative Filtering for Fast Cold-start Recommendation.
- Towards Comprehensive Recommender Systems: Time-Aware Unified Recommendations Based on Listwise Ranking of Implicit Cross-Network Data.
- Fast Adaptively Weighted Matrix Factorization for Recommendation with Implicit Feedback.
- Towards Hands‐free Visual Dialog Interactive Recommendation.
- Contextual-Bandit Based Personalized Recommendation with Time-Varying User Interests.
- Stochastically Robust Personalized Ranking for LSH Recommendation Retrieval.
- Revisiting Graph based Collaborative Filtering: A Linear Residual Graph Convolutional Network Approach.
- Multi-Component Graph Convolutional Collaborative Filtering.
- Deep Match to Rank Model for Personalized Click-Through Rate Prediction.
- Deep Time-Stream Framework for Click-Through Rate Prediction by Tracking Interest Evolution.
- Improved Algorithms for Conservative Exploration in Bandits.
- Linear Bandits with Feature Feedback.
總結
隨著推薦系統的重要性越來越大,研究推薦的人逐漸在增多;隨著工業界所產生的用戶數據越來越多,工業界研究推薦的優勢也越來越大。此次會議上出現了許多推薦的應用,比如音樂推薦、興趣點推薦、旅遊推薦、論文推薦等;同時也有相關的研究放到冷啟動、推薦效率等問題上。