RT-Thread學習2 —— 記憶體管理學習記錄

RT-Thread學習2 —— 記憶體管理學習記錄1

小記憶體管理演算法(mem.c)

1. 小記憶體管理法:

小記憶體管理演算法是一個簡單的記憶體分配演算法。初始時,它是一塊大的記憶體。當需要分配記憶體塊時,將從這個大的記憶體塊上分割出相匹配的記憶體塊,然後把分割出來的空閑記憶體塊還回給堆管理系統中。每個記憶體塊都包含一個管理用的數據頭,通過這個頭把使用塊與空閑塊用雙向鏈表的方式鏈接起來,如下圖所示:
image

2. 兩大數據結構體

image
rt_samll_mem:記錄整個記憶體對象的基本資訊
rt_samll_mem_item:記錄各個記憶體塊的使用情況

3. 初始化函數:rt_smem_init

在函數參數合法的情況下執行後的初始化記憶體結構大致如下圖所示:
image

4. rt_smem_alloc函數和rt_smem_realloc函數


/**
 * @brief Allocate a block of memory with a minimum of 'size' bytes.
 *
 * @param m the small memory management object.
 *
 * @param size is the minimum size of the requested block in bytes.
 *
 * @return the pointer to allocated memory or NULL if no free memory was found.
 */
void *rt_smem_alloc(rt_smem_t m, rt_size_t size)
{
    rt_size_t ptr, ptr2;
    struct rt_small_mem_item *mem, *mem2;
    struct rt_small_mem *small_mem;

    if (size == 0)
        return RT_NULL;

    RT_ASSERT(m != RT_NULL);
    RT_ASSERT(rt_object_get_type(&m->parent) == RT_Object_Class_Memory);
    RT_ASSERT(rt_object_is_systemobject(&m->parent));

    if (size != RT_ALIGN(size, RT_ALIGN_SIZE))
        RT_DEBUG_LOG(RT_DEBUG_MEM, ("malloc size %d, but align to %d\n",
                                    size, RT_ALIGN(size, RT_ALIGN_SIZE)));
    else
        RT_DEBUG_LOG(RT_DEBUG_MEM, ("malloc size %d\n", size));

    small_mem = (struct rt_small_mem *)m;
    /* alignment size */
    size = RT_ALIGN(size, RT_ALIGN_SIZE);

    //判斷申請的空間是不是大於整個記憶體的空間
    if (size > small_mem->mem_size_aligned)
    {
        RT_DEBUG_LOG(RT_DEBUG_MEM, ("no memory\n"));

        return RT_NULL;
    }
    //確保申請的空間最小是對齊size的大小
    /* every data block must be at least MIN_SIZE_ALIGNED long */
    if (size < MIN_SIZE_ALIGNED)
        size = MIN_SIZE_ALIGNED;
    //遍歷每一個item
    for (ptr = (rt_uint8_t *)small_mem->lfree - small_mem->heap_ptr;
         ptr <= small_mem->mem_size_aligned - size;
         ptr = ((struct rt_small_mem_item *)&small_mem->heap_ptr[ptr])->next)
    {
        mem = (struct rt_small_mem_item *)&small_mem->heap_ptr[ptr];
        //找空閑塊並且這個空閑塊的大小比要申請的大的塊
        if ((!MEM_ISUSED(mem)) && (mem->next - (ptr + SIZEOF_STRUCT_MEM)) >= size)
        {
            /* mem is not used and at least perfect fit is possible:
             * mem->next - (ptr + SIZEOF_STRUCT_MEM) gives us the 'user data size' of mem */
            //如果當前的item後面跟的記憶體塊比要申請的空間加其他描述資訊的空間大,那就符合條件
            if (mem->next - (ptr + SIZEOF_STRUCT_MEM) >=
                (size + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED))
            {
                /* (in addition to the above, we test if another struct rt_small_mem_item (SIZEOF_STRUCT_MEM) containing
                 * at least MIN_SIZE_ALIGNED of data also fits in the 'user data space' of 'mem')
                 * -> split large block, create empty remainder,
                 * remainder must be large enough to contain MIN_SIZE_ALIGNED data: if
                 * mem->next - (ptr + (2*SIZEOF_STRUCT_MEM)) == size,
                 * struct rt_small_mem_item would fit in but no data between mem2 and mem2->next
                 * @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty
                 *       region that couldn't hold data, but when mem->next gets freed,
                 *       the 2 regions would be combined, resulting in more free memory
                 */
                //ptr2 指向當前資訊塊加實際記憶體塊後的地址(下一個空閑塊要寫入對應的資訊塊)
                ptr2 = ptr + SIZEOF_STRUCT_MEM + size;
                //mem2為下一個資訊塊賦值
                /* create mem2 struct */
                mem2       = (struct rt_small_mem_item *)&small_mem->heap_ptr[ptr2];
                mem2->pool_ptr = MEM_FREED();
                mem2->next = mem->next;
                mem2->prev = ptr;
#ifdef RT_USING_MEMTRACE
                rt_smem_setname(mem2, "    ");
#endif /* RT_USING_MEMTRACE */
                //設置當前資訊塊的下一個為pt2
                /* and insert it between mem and mem->next */
                mem->next = ptr2;
                //如果不是初始時候的第一塊那需要把end of heap的pre指向ptr2
                if (mem2->next != small_mem->mem_size_aligned + SIZEOF_STRUCT_MEM)
                {
                    ((struct rt_small_mem_item *)&small_mem->heap_ptr[mem2->next])->prev = ptr2;
                }
                small_mem->parent.used += (size + SIZEOF_STRUCT_MEM);
                if (small_mem->parent.max < small_mem->parent.used)
                    small_mem->parent.max = small_mem->parent.used;
            }
            else
            {
                /* (a mem2 struct does no fit into the user data space of mem and mem->next will always
                 * be used at this point: if not we have 2 unused structs in a row, plug_holes should have
                 * take care of this).
                 * -> near fit or excact fit: do not split, no mem2 creation
                 * also can't move mem->next directly behind mem, since mem->next
                 * will always be used at this point!
                 */
                //如果不夠長,將位置占上
                small_mem->parent.used += mem->next - ((rt_uint8_t *)mem - small_mem->heap_ptr);
                if (small_mem->parent.max < small_mem->parent.used)
                    small_mem->parent.max = small_mem->parent.used;
            }
            //設置當前要申請的記憶體的資訊塊
            /* set small memory object */
            mem->pool_ptr = MEM_USED();
#ifdef RT_USING_MEMTRACE
            if (rt_thread_self())
                rt_smem_setname(mem, rt_thread_self()->name);
            else
                rt_smem_setname(mem, "NONE");
#endif /* RT_USING_MEMTRACE */
            //將lfree指向下一個空閑的位置
            if (mem == small_mem->lfree)
            {
                /* Find next free block after mem and update lowest free pointer */
                while (MEM_ISUSED(small_mem->lfree) && small_mem->lfree != small_mem->heap_end)
                    small_mem->lfree = (struct rt_small_mem_item *)&small_mem->heap_ptr[small_mem->lfree->next];

                RT_ASSERT(((small_mem->lfree == small_mem->heap_end) || (!MEM_ISUSED(small_mem->lfree))));
            }
            RT_ASSERT((rt_ubase_t)mem + SIZEOF_STRUCT_MEM + size <= (rt_ubase_t)small_mem->heap_end);
            RT_ASSERT((rt_ubase_t)((rt_uint8_t *)mem + SIZEOF_STRUCT_MEM) % RT_ALIGN_SIZE == 0);
            RT_ASSERT((((rt_ubase_t)mem) & (RT_ALIGN_SIZE - 1)) == 0);

            RT_DEBUG_LOG(RT_DEBUG_MEM,
                         ("allocate memory at 0x%x, size: %d\n",
                          (rt_ubase_t)((rt_uint8_t *)mem + SIZEOF_STRUCT_MEM),
                          (rt_ubase_t)(mem->next - ((rt_uint8_t *)mem - small_mem->heap_ptr))));

            //返回的是真實可以操作數據的地址(前面會又一個資訊頭)
            /* return the memory data except mem struct */
            return (rt_uint8_t *)mem + SIZEOF_STRUCT_MEM;
        }
    }

    return RT_NULL;
}

/**
 * @brief This function will change the size of previously allocated memory block.
 *
 * @param m the small memory management object.
 *
 * @param rmem is the pointer to memory allocated by rt_mem_alloc.
 *
 * @param newsize is the required new size.
 *
 * @return the changed memory block address.
 */
void *rt_smem_realloc(rt_smem_t m, void *rmem, rt_size_t newsize)
{
    rt_size_t size;
    rt_size_t ptr, ptr2;
    struct rt_small_mem_item *mem, *mem2;
    struct rt_small_mem *small_mem;
    void *nmem;

    RT_ASSERT(m != RT_NULL);
    RT_ASSERT(rt_object_get_type(&m->parent) == RT_Object_Class_Memory);
    RT_ASSERT(rt_object_is_systemobject(&m->parent));

    small_mem = (struct rt_small_mem *)m;
    /* alignment size */
    newsize = RT_ALIGN(newsize, RT_ALIGN_SIZE);
    //新申請的比總空間大
    if (newsize > small_mem->mem_size_aligned)
    {
        RT_DEBUG_LOG(RT_DEBUG_MEM, ("realloc: out of memory\n"));

        return RT_NULL;
    }
    //新申請的大小是0
    else if (newsize == 0)
    {
        rt_smem_free(rmem);
        return RT_NULL;
    }

    //地址還沒allocate
    /* allocate a new memory block */
    if (rmem == RT_NULL)
        return rt_smem_alloc(&small_mem->parent, newsize);

    RT_ASSERT((((rt_ubase_t)rmem) & (RT_ALIGN_SIZE - 1)) == 0);
    RT_ASSERT((rt_uint8_t *)rmem >= (rt_uint8_t *)small_mem->heap_ptr);
    RT_ASSERT((rt_uint8_t *)rmem < (rt_uint8_t *)small_mem->heap_end);

    //取出申請記憶體的資訊塊
    mem = (struct rt_small_mem_item *)((rt_uint8_t *)rmem - SIZEOF_STRUCT_MEM);

    //計算當前資訊塊的大小
    /* current memory block size */
    ptr = (rt_uint8_t *)mem - small_mem->heap_ptr;
    size = mem->next - ptr - SIZEOF_STRUCT_MEM;
    if (size == newsize)
    {
        /* the size is the same as */
        return rmem;
    }

    //當前資訊塊比新申請的大
    if (newsize + SIZEOF_STRUCT_MEM + MIN_SIZE < size)
    {
        /* split memory block */
        small_mem->parent.used -= (size - newsize);

        ptr2 = ptr + SIZEOF_STRUCT_MEM + newsize;
        mem2 = (struct rt_small_mem_item *)&small_mem->heap_ptr[ptr2];
        mem2->pool_ptr = MEM_FREED();
        mem2->next = mem->next;
        mem2->prev = ptr;
#ifdef RT_USING_MEMTRACE
        rt_smem_setname(mem2, "    ");
#endif /* RT_USING_MEMTRACE */
        mem->next = ptr2;
        if (mem2->next != small_mem->mem_size_aligned + SIZEOF_STRUCT_MEM)
        {
            ((struct rt_small_mem_item *)&small_mem->heap_ptr[mem2->next])->prev = ptr2;
        }

        if (mem2 < small_mem->lfree)
        {
            /* the splited struct is now the lowest */
            small_mem->lfree = mem2;
        }

        plug_holes(small_mem, mem2);

        return rmem;
    }

    /* expand memory */
    nmem = rt_smem_alloc(&small_mem->parent, newsize);
    if (nmem != RT_NULL) /* check memory */
    {
        rt_memcpy(nmem, rmem, size < newsize ? size : newsize);
        rt_smem_free(rmem);
    }

    return nmem;
}
RTM_EXPORT(rt_smem_realloc);

Tags: