數字頻率、模擬頻率之間關係的推導
- 2022 年 3 月 2 日
- 筆記
傅里葉變換為:
\]
\]
但是傅里葉變換存在的充分條件是在無限區間內滿足絕對可積:
\]
該條件限制了某些增長訊號如\(e^{at},a>0\)傅里葉變換的存在,對於周期訊號、階躍訊號雖然沒有受到這方面限制,但其變換式中出現衝激函數\(\delta(\Omega)\)。為了使更多的函數存在變換,並簡化某些變換形式或運算過程,引入一個衰減因子\(e^{-\sigma t}\)(\(\sigma\)為任意實數)使它與\(x(t)\)相乘,於是\(e^{-\sigma t}x(t)\)得以收斂,絕對可積條件就容易滿足。此時\(e^{-\sigma t}x(t)\)的傅里葉變換為:
\]
將上式中的\(\sigma+j\Omega\)用符號\(s\)代替:
\]
於是可以得到:
\]
再利用傅里葉逆變換,尋找由\(X(s)\)求\(x(t)\)的一般表示式:
x(t)e^{-\sigma t}=\frac{1}{2\pi}\int_{-\infty}^{\infty}X_{1}(\Omega)e^{j\Omega t}d\Omega \\
x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X_{1}(\Omega)e^{(\sigma+j\Omega)t}d\Omega \\
\end{aligned}\]
將\(s=\sigma+j\Omega,ds=jd\Omega\)帶入上式,並改變積分上下限,可以得到:
\]
至此,得到了拉普拉斯的正反變換分別為\((4),(5)\)。
上述兩個變換都是對連續函數進行分析,但是數字訊號處理處理的都是時間上離散的序列\(x(n)\),上面兩個變換怎麼映射到序列上去呢?
首先需要對連續訊號進行抽樣,進而得到離散序列\(x(n)\),假設抽樣間隔為\(T_{s}\)那麼由連續訊號到離散訊號的過程為:
\]
上式中\(x_{s}(t)\)是\(x(t)\)在離散時刻\(mT_{s}\)的樣點值的集合。
考慮\(x_{s}(t)\)的拉普拉斯變換:
X_{s}(s)&=\int_{-\infty}^{+\infty}x_{s}(t)e^{-st}dt=\int_{-\infty}^{+\infty}[\sum_{n=-\infty}^{\infty}x(nT_{s})\delta(t-nT_{s})(t)]e^{-st}dt \\
&= \sum_{n=-\infty}^{\infty}x(nT_{s})\int_{-\infty}^{+\infty}\delta(t-nT_{s})e^{-st}dt \\
&= \sum_{n=-\infty}^{\infty}x(nT_{s})e^{-snT_{s}}=X(e^{sT_{s}})
\end{aligned}\]
如果令
\]
並將\(x(nT_{s})\)簡記為一般的離散序列\(x(n)\),可以得到:
\]
這樣拉普拉斯變換就變成了\(z\)變換。
我們知道傅里葉變換中的\(X(\Omega)\)反應的是訊號的頻譜(包括相頻、幅頻特性),這時對應的拉普拉斯變換中的\(\sigma=0\)。而如果想要得到離散序列的頻譜,相應的\(z\)變換中的\(z=e^{sT_{s}}=e^{\sigma+j\Omega}\)中的\(\sigma\)也要等於0。此時\(z\)變換變為:
\]
令
\]
可以得到
\]
這就是離散序列的傅里葉變換(DTFT)了。
\((8)\)中的\(\omega\)定義為「數字頻率」,而\(\Omega\)正是模擬角頻率,由此可以得出,數字角頻率,模擬角頻率,以及模擬頻率與取樣頻率的關係如下:
\]
到了這裡可以發現時域上數值已經離散,但是頻域上還沒有變成離散的,這不適合電腦處理,於是還需要將頻譜也變成離散的,該如何變呢?(下次接著說)