­

基於SparkStreaming+Kafka+HBase實時點擊流案例

  • 2020 年 1 月 14 日
  • 筆記

背景

Kafka實時記錄從數據採集工具Flume或業務系統實時介面收集數據,並作為消息緩衝組件為上游實時計算框架提供可靠數據支撐,Spark 1.3版本後支援兩種整合Kafka機制(Receiver-based Approach 和 Direct Approach),具體細節請參考文章最後官方文檔鏈接,數據存儲使用HBase

實現思路

  • 實現Kafka消息生產者模擬器
  • Spark-Streaming採用Direct Approach方式實時獲取Kafka中數據
  • Spark-Streaming對數據進行業務計算後數據存儲到HBase

本地虛擬機集群環境配置

由於筆者機器性能有限,hadoop/zookeeper/kafka集群都搭建在一起主機名分別為hadoop1,hadoop2,hadoop3; hbase為單節點在hadoop1

缺點及不足

程式碼設計上有些許缺陷,比如spark-streaming計算後數據保存hbase邏輯性能待優化。

程式碼實現

Kafka消息模擬器

package clickstream  import java.util.{Properties, Random, UUID}  import kafka.producer.{KeyedMessage, Producer, ProducerConfig}  import org.codehaus.jettison.json.JSONObject    object KafkaMessageGenerator {    private val random = new Random()    private var pointer = -1    private val os_type = Array(      "Android", "IPhone OS",      "None", "Windows Phone")      def click() : Double = {      random.nextInt(10)    }      def getOsType() : String = {      pointer = pointer + 1      if(pointer >= os_type.length) {        pointer = 0        os_type(pointer)      } else {        os_type(pointer)      }    }      def main(args: Array[String]): Unit = {      val topic = "user_events"      //本地虛擬機ZK地址      val brokers = "hadoop1:9092,hadoop2:9092,hadoop3:9092"      val props = new Properties()      props.put("metadata.broker.list", brokers)      props.put("serializer.class", "kafka.serializer.StringEncoder")        val kafkaConfig = new ProducerConfig(props)      val producer = new Producer[String, String](kafkaConfig)        while(true) {        // prepare event data        val event = new JSONObject()        event          .put("uid", UUID.randomUUID())//隨機生成用戶id          .put("event_time", System.currentTimeMillis.toString) //記錄時間發生時間          .put("os_type", getOsType) //設備類型          .put("click_count", click) //點擊次數          // produce event message        producer.send(new KeyedMessage[String, String](topic, event.toString))        println("Message sent: " + event)          Thread.sleep(200)      }    }  }

Spark-Streaming主類

package clickstream  import kafka.serializer.StringDecoder  import net.sf.json.JSONObject  import org.apache.hadoop.hbase.client.{HTable, Put}  import org.apache.hadoop.hbase.util.Bytes  import org.apache.hadoop.hbase.{HBaseConfiguration, TableName}  import org.apache.spark.SparkConf  import org.apache.spark.streaming.kafka.KafkaUtils  import org.apache.spark.streaming.{Seconds, StreamingContext}      object PageViewStream {    def main(args: Array[String]): Unit = {      var masterUrl = "local[2]"      if (args.length > 0) {        masterUrl = args(0)      }        // Create a StreamingContext with the given master URL      val conf = new SparkConf().setMaster(masterUrl).setAppName("PageViewStream")      val ssc = new StreamingContext(conf, Seconds(5))        // Kafka configurations      val topics = Set("PageViewStream")      //本地虛擬機ZK地址      val brokers = "hadoop1:9092,hadoop2:9092,hadoop3:9092"      val kafkaParams = Map[String, String](        "metadata.broker.list" -> brokers,        "serializer.class" -> "kafka.serializer.StringEncoder")        // Create a direct stream      val kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics)        val events = kafkaStream.flatMap(line => {        val data = JSONObject.fromObject(line._2)        Some(data)      })      // Compute user click times      val userClicks = events.map(x => (x.getString("uid"), x.getInt("click_count"))).reduceByKey(_ + _)      userClicks.foreachRDD(rdd => {        rdd.foreachPartition(partitionOfRecords => {          partitionOfRecords.foreach(pair => {            //Hbase配置            val tableName = "PageViewStream"            val hbaseConf = HBaseConfiguration.create()            hbaseConf.set("hbase.zookeeper.quorum", "hadoop1:9092")            hbaseConf.set("hbase.zookeeper.property.clientPort", "2181")            hbaseConf.set("hbase.defaults.for.version.skip", "true")            //用戶ID            val uid = pair._1            //點擊次數            val click = pair._2            //組裝數據            val put = new Put(Bytes.toBytes(uid))            put.add("Stat".getBytes, "ClickStat".getBytes, Bytes.toBytes(click))            val StatTable = new HTable(hbaseConf, TableName.valueOf(tableName))            StatTable.setAutoFlush(false, false)            //寫入數據快取            StatTable.setWriteBufferSize(3*1024*1024)            StatTable.put(put)            //提交            StatTable.flushCommits()          })        })      })      ssc.start()      ssc.awaitTermination()      }    }  

Maven POM文件

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"    xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">    <modelVersion>4.0.0</modelVersion>      <groupId>com.guofei.spark</groupId>    <artifactId>RiskControl</artifactId>    <version>1.0-SNAPSHOT</version>    <packaging>jar</packaging>      <name>RiskControl</name>    <url>http://maven.apache.org</url>      <properties>      <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>    </properties>      <dependencies>      <!--Spark core 及 streaming -->      <dependency>        <groupId>org.apache.spark</groupId>        <artifactId>spark-core_2.10</artifactId>        <version>1.3.0</version>      </dependency>      <dependency>        <groupId>org.apache.spark</groupId>        <artifactId>spark-streaming_2.10</artifactId>        <version>1.3.0</version>      </dependency>      <!-- Spark整合Kafka-->      <dependency>        <groupId>org.apache.spark</groupId>        <artifactId>spark-streaming-kafka_2.10</artifactId>        <version>1.3.0</version>      </dependency>        <!-- 整合Hbase-->      <dependency>        <groupId>org.apache.hbase</groupId>        <artifactId>hbase</artifactId>        <version>0.96.2-hadoop2</version>        <type>pom</type>      </dependency>      <!--Hbase依賴 -->      <dependency>        <groupId>org.apache.hbase</groupId>        <artifactId>hbase-server</artifactId>        <version>0.96.2-hadoop2</version>      </dependency>      <dependency>        <groupId>org.apache.hbase</groupId>        <artifactId>hbase-client</artifactId>        <version>0.96.2-hadoop2</version>      </dependency>      <dependency>        <groupId>org.apache.hbase</groupId>        <artifactId>hbase-common</artifactId>        <version>0.96.2-hadoop2</version>      </dependency>      <dependency>        <groupId>commons-io</groupId>        <artifactId>commons-io</artifactId>        <version>1.3.2</version>      </dependency>      <dependency>        <groupId>commons-logging</groupId>        <artifactId>commons-logging</artifactId>        <version>1.1.3</version>      </dependency>      <dependency>        <groupId>log4j</groupId>        <artifactId>log4j</artifactId>        <version>1.2.17</version>      </dependency>        <dependency>        <groupId>com.google.protobuf</groupId>        <artifactId>protobuf-java</artifactId>        <version>2.5.0</version>      </dependency>      <dependency>        <groupId>io.netty</groupId>        <artifactId>netty</artifactId>        <version>3.6.6.Final</version>      </dependency>      <dependency>        <groupId>org.apache.hbase</groupId>        <artifactId>hbase-protocol</artifactId>        <version>0.96.2-hadoop2</version>      </dependency>      <dependency>        <groupId>org.apache.zookeeper</groupId>        <artifactId>zookeeper</artifactId>        <version>3.4.5</version>      </dependency>      <dependency>        <groupId>org.cloudera.htrace</groupId>        <artifactId>htrace-core</artifactId>        <version>2.01</version>      </dependency>      <dependency>        <groupId>org.codehaus.jackson</groupId>        <artifactId>jackson-mapper-asl</artifactId>        <version>1.9.13</version>      </dependency>      <dependency>        <groupId>org.codehaus.jackson</groupId>        <artifactId>jackson-core-asl</artifactId>        <version>1.9.13</version>      </dependency>      <dependency>        <groupId>org.codehaus.jackson</groupId>        <artifactId>jackson-jaxrs</artifactId>        <version>1.9.13</version>      </dependency>      <dependency>        <groupId>org.codehaus.jackson</groupId>        <artifactId>jackson-xc</artifactId>        <version>1.9.13</version>      </dependency>      <dependency>        <groupId>org.slf4j</groupId>        <artifactId>slf4j-api</artifactId>        <version>1.6.4</version>      </dependency>      <dependency>        <groupId>org.slf4j</groupId>        <artifactId>slf4j-log4j12</artifactId>        <version>1.6.4</version>      </dependency>        <!-- Hadoop依賴包-->      <dependency>        <groupId>org.apache.hadoop</groupId>        <artifactId>hadoop-client</artifactId>        <version>2.6.4</version>      </dependency>      <dependency>        <groupId>commons-configuration</groupId>        <artifactId>commons-configuration</artifactId>        <version>1.6</version>      </dependency>      <dependency>        <groupId>org.apache.hadoop</groupId>        <artifactId>hadoop-auth</artifactId>        <version>2.6.4</version>      </dependency>      <dependency>        <groupId>org.apache.hadoop</groupId>        <artifactId>hadoop-common</artifactId>        <version>2.6.4</version>      </dependency>        <dependency>        <groupId>net.sf.json-lib</groupId>        <artifactId>json-lib</artifactId>        <version>2.4</version>        <classifier>jdk15</classifier>      </dependency>        <dependency>        <groupId>org.codehaus.jettison</groupId>        <artifactId>jettison</artifactId>        <version>1.1</version>      </dependency>        <dependency>        <groupId>redis.clients</groupId>        <artifactId>jedis</artifactId>        <version>2.5.2</version>      </dependency>      <dependency>        <groupId>org.apache.commons</groupId>        <artifactId>commons-pool2</artifactId>        <version>2.2</version>      </dependency>    </dependencies>      <build>      <sourceDirectory>src/main/scala</sourceDirectory>      <testSourceDirectory>src/test/scala</testSourceDirectory>      <plugins>        <plugin>          <groupId>net.alchim31.maven</groupId>          <artifactId>scala-maven-plugin</artifactId>          <version>3.2.2</version>          <executions>            <execution>              <goals>                <goal>compile</goal>                <goal>testCompile</goal>              </goals>              <configuration>                <args>                  <arg>-make:transitive</arg>                  <arg>-dependencyfile</arg>                  <arg>${project.build.directory}/.scala_dependencies</arg>                </args>              </configuration>            </execution>          </executions>        </plugin>          <plugin>          <groupId>org.apache.maven.plugins</groupId>          <artifactId>maven-shade-plugin</artifactId>          <version>2.4.3</version>          <executions>            <execution>              <phase>package</phase>              <goals>                <goal>shade</goal>              </goals>              <configuration>                <filters>                  <filter>                    <artifact>*:*</artifact>                    <excludes>                      <exclude>META-INF/*.SF</exclude>                      <exclude>META-INF/*.DSA</exclude>                      <exclude>META-INF/*.RSA</exclude>                    </excludes>                  </filter>                </filters>              </configuration>            </execution>          </executions>        </plugin>      </plugins>    </build>  </project>  

FAQ

  • Maven導入json-lib報錯 Failure to find net.sf.json-lib:json-lib:jar:2.3 in http://repo.maven.apache.org/maven2 was cached in the local repository 解決: http://stackoverflow.com/questions/4173214/maven-missing-net-sf-json-lib <dependency> <groupId>net.sf.json-lib</groupId> <artifactId>json-lib</artifactId> <version>2.4</version> <classifier>jdk15</classifier> </dependency>
  • 執行Spark-Streaming程式報錯 org.apache.spark.SparkException: Task not serializable
userClicks.foreachRDD(rdd => {  rdd.foreachPartition(partitionOfRecords => {  partitionOfRecords.foreach(  這裡面的程式碼中所包含的對象必須是序列化的  這裡面的程式碼中所包含的對象必須是序列化的  這裡面的程式碼中所包含的對象必須是序列化的  })  })  })

執行Maven打包報錯,找不到依賴的jar包 error:not found: object kafka ERROR import kafka.javaapi.producer.Producer 解決:win10本地系統 用戶/xxx/.m2/ 目錄含有中文

參考文檔

  • spark-streaming官方文檔 http://spark.apache.org/docs/latest/streaming-programming-guide.html
  • spark-streaming整合kafka官方文檔 http://spark.apache.org/docs/latest/streaming-kafka-integration.html
  • spark-streaming整合flume官方文檔 http://spark.apache.org/docs/latest/streaming-flume-integration.html
  • spark-streaming整合自定義數據源官方文檔 http://spark.apache.org/docs/latest/streaming-custom-receivers.html
  • spark-streaming官方scala案例 https://github.com/apache/spark/tree/master/examples/src/main/scala/org/apache/spark/examples/streaming
  • 簡單之美部落格 http://shiyanjun.cn/archives/1097.html

作者:MichaelFly 鏈接:https://www.jianshu.com/p/ccba410462ba

歡迎點贊+收藏+轉發朋友圈素質三連

文章不錯?點個【在看】吧! ?