時間序列分析基本思想及時間序列建模步驟

平穩時間序列的意義

根據數理統計學常識,要分析的隨機變數獲得的樣本資訊越多,分析的結果就會越可靠,但由於時間序列分析的特殊數據結構,對隨機序列{…,X1,X2…,Xt,…}而言,它在任意時刻 t 的序列值 Xt 都是一個隨機變數,而且由於時間的不可重複性,該變數在任意一個時刻都只能獲得唯一的樣本觀察值,通常是沒有辦法分析的。在平穩序列場合里,序列的均值等於常數,意味著原本含有可列多個隨機變數的均值序列變成了一個常數序列,原本每個隨機變數的均值只能依靠唯一的一個樣本觀察值去估計,現在每一個樣本觀察值都變成了常數均值的樣本觀察值,這極大的減少了隨機變數的個數,並增加了待估參數的樣本容量。

平穩性校驗

  • 一種是根據時序圖和自相關圖顯示的特徵做出判斷的圖檢驗方法(自相關圖是一個平面二維坐標懸垂線圖,一個坐標軸便是延遲時期數,另一個坐標軸表示自相關係數,通常以懸垂線表示自相關係數的大小。自相關圖進行平穩性判斷的標準:隨著延遲期數 k 的增加,平穩序列的自相關係數會很快的衰減向零;反之,非平穩序列的自相關係數衰減向零的速度通常比較慢)
  • 另一種是構造檢驗統計量進行假設檢驗的方法(目前最常用的平穩性統計校驗方法是單位根檢驗,DF檢驗和ADF檢驗)

白雜訊檢驗

通過平穩性校驗,序列可以分為平穩序列和非平穩序列
  • 對於非平穩序列,通常要進行進一步的校驗、變換或處理後,才能確定合適的擬合模型;
  • 對於平穩序列,只有那些序列值之間具有密切的相關關係,歷史數據對未來發展有一定影響的序列,才值得建模。(如果序列彼此之間沒有任何相關性,那就意味著該序列是一個沒有記憶的序列,過去的序列對未來的發展沒有任何影響,是一種沒有任何分析價值的而序列,稱之為純隨機序列,白雜訊序列就是一種純隨機序列)
使用Q統計量和LB統計量來校驗白雜訊序列
  • Q統計量:Q統計量近似服從自由度為m的卡方分布,當Q統計量大於卡方分位點或者統計量的P值小於α時,則可以以1-α的置信水平拒絕原假設,認為該序列為非白雜訊序列,否則,不能拒絕原假設,認為該序列為純隨機序列。在大樣本場合,檢驗效果很好,但在小樣本場合不太精確
  • LB統計量:是對Q統計量的修正,同樣近似服從自由度為m的卡方分布,在各種檢驗場合,普遍採用的Q統計量通常指的都是LB統計量

數據預處理

差分運算,經過差分運算後的序列,呈現典型的隨機波動特徵。差分方法的優點是對確定性資訊的提取比較充分,缺點是很難對模型進行直觀解釋(當序列具有非常顯著的確定性趨勢或者季節效應時,為了通過確定性因素分解方法提取序列中各種確定性效應的解釋,構造了殘差自回歸模型)
  • 序列蘊涵顯著的線性趨勢,1階差分就可以實現趨勢平穩
  • 序列蘊涵曲線趨勢,通常低階(2階或者3階)差分就可以提取出曲線趨勢的影響
  • 蘊涵固定個周期的序列,進行步長為固定周期長度的差分運算,可以較好的提取周期資訊
 
提取走的那部分特徵如何處理呢?使用確定性因素分解方法。所有的序列波動都可以歸納為受長期趨勢、循環趨勢、季節性變化、隨機波動4大類因素的綜合影響,也就是說任何一個時間序列都可以用這4個因素的某個函數進行擬合,最常用的函數是加法函數和乘法函數
  • 簡單中心移動平均能有效消除季節效應,有效提取低階趨勢,能實現擬合方差最小
  • 簡單移動平均比值能有效提取季節效應

模型選擇

 
平穩序列
非平穩序列
異方差序列
自回歸模型
AR模型
 
ARCH模型
GARCH模型及其衍生模型
AR-GARCH模型
移動平均模型
MA模型
   
自回歸移動平均模型
ARMA模型
ARIMA模型
ARCH模型
GARCH模型及其衍生模型
AR-GARCH模型
 

參數估計

  • 矩估計
  • 極大似然估計(必須已知總體的分布函數,在時間序列分析中,序列總體的分布通常是未知的,為便於分析和計算,通常假設序列服從多元正態分布)
  • 最小二乘估計(在實際中,最常用的是條件最小二乘估計方法)

模型檢驗

模型檢驗包括模型的顯著性校驗和參數的顯著性校驗
  • 模型的檢驗即為殘差序列中的白雜訊檢驗,如果殘差序列是白雜訊序列,則擬合殘差項中將不蘊涵任何相關資訊,即模型提取的資訊足夠充分,模型的顯著性高;反之,說明模型擬合不夠有效,需要選擇其他模型,重新擬合
  • 參數的顯著性校驗就是要檢驗每一個未知參數是否顯著非零。檢驗的目的是使模型最精簡

模型優化

綜合考慮模型的擬合精度和未知參數個數的綜合最優配置。若一個擬合模型通過了校驗,說明在一定的置信水平下,該模型能有效擬合觀察值序列的波動,但這種有效模型不一定是唯一的。在所有通過校驗的模型中使用AIC或者SBC函數達到最小的函數為相對最優模型。
 
 
參考資料:中國人民大學出版社《應用時間序列分析》第四版    王燕編著