要素不精確的光學神經網路的設計(Emerging Technologies)
- 2020 年 1 月 8 日
- 筆記
為了設計可伸縮的、抗故障的光學神經網路,我們研究了結構設計對光學神經網路在非精確元件方面的穩健性的影響。我們設計了兩個光學神經網路來對手寫數字進行分類,一個具有更好的可調設計(GridNet),另一個具有更好的容錯能力(FFTNet)。在沒有任何缺陷的情況下進行模擬時,GridNet的精確度(∼98%)比FFTNet(∼95%)好。然而,在其光子分量誤差較小的情況下,容錯能力越強的FFTNet能超越GridNet。我們還對光學神經網路關於不同程度和不同類型的缺陷的敏感性進行了深入的定量和定性分析。本文的研究結果為網路容錯的原則設計提供了指導,同時也為下一步的研究奠定了基礎。
原文題目:Design of optical neural networks with component imprecisions
原文: For the benefit of designing scalable, fault resistant optical neural networks (ONNs), we investigate the effects architectural designs have on the ONNs』 robustness to imprecise components. We train two ONNs – one with a more tunable design (GridNet) and one with better fault tolerance (FFTNet) – to classify handwritten digits. When simulated without any imperfections, GridNet yields a better accuracy (~ 98%) than FFTNet (~ 95%). However, under a small amount of error in their photonic components, the more fault tolerant FFTNet overtakes GridNet. We further provide thorough quantitative and qualitative analyses of ONNs』 sensitivity to varying levels and types of imprecisions. Our results offer guidelines for the principled design of fault-tolerant ONNs as well as a foundation for further research.
.
原文作者:Michael Y.-S. Fang, Sasikanth Manipatruni, Casimir Wierzynski, Amir Khosrowshahi, Michael R. DeWeese
原文地址: https://arxiv.org/abs/2001.01681