Linux-3.14.12記憶體管理筆記【夥伴管理演算法(4)】

  • 2019 年 12 月 20 日
  • 筆記

此處承接前面未深入分析的頁面釋放部分,主要詳細分析夥伴管理演算法中頁面釋放的實現。頁面釋放的函數入口是__free_page(),其實則是一個宏定義。

具體實現:

【file:/include/linux/gfp.h】  #define __free_page(page) __free_pages((page), 0)

而__free_pages()的實現:

【file:/mm/page_alloc.c】  void __free_pages(struct page *page, unsigned int order)  {      if (put_page_testzero(page)) {          if (order == 0)              free_hot_cold_page(page, 0);          else              __free_pages_ok(page, order);      }  }

其中put_page_testzero()是對page結構的_count引用計數做原子減及測試,用於檢查記憶體頁面是否仍被使用,如果不再使用,則進行釋放。其中order表示頁面數量,如果釋放的是單頁,則會調用free_hot_cold_page()將頁面釋放至per-cpu page快取中,而不是夥伴管理演算法;真正的釋放至夥伴管理演算法的是__free_pages_ok(),同時也是用於多個頁面釋放的情況。

此處接著則由free_hot_cold_page()開始分析:

【file:/mm/page_alloc.c】  /*   * Free a 0-order page   * cold == 1 ? free a cold page : free a hot page   */  void free_hot_cold_page(struct page *page, int cold)  {      struct zone *zone = page_zone(page);      struct per_cpu_pages *pcp;      unsigned long flags;      int migratetype;        if (!free_pages_prepare(page, 0))          return;        migratetype = get_pageblock_migratetype(page);      set_freepage_migratetype(page, migratetype);      local_irq_save(flags);      __count_vm_event(PGFREE);        /*       * We only track unmovable, reclaimable and movable on pcp lists.       * Free ISOLATE pages back to the allocator because they are being       * offlined but treat RESERVE as movable pages so we can get those       * areas back if necessary. Otherwise, we may have to free       * excessively into the page allocator       */      if (migratetype >= MIGRATE_PCPTYPES) {          if (unlikely(is_migrate_isolate(migratetype))) {              free_one_page(zone, page, 0, migratetype);              goto out;          }          migratetype = MIGRATE_MOVABLE;      }        pcp = &this_cpu_ptr(zone->pageset)->pcp;      if (cold)          list_add_tail(&page->lru, &pcp->lists[migratetype]);      else          list_add(&page->lru, &pcp->lists[migratetype]);      pcp->count++;      if (pcp->count >= pcp->high) {          unsigned long batch = ACCESS_ONCE(pcp->batch);          free_pcppages_bulk(zone, batch, pcp);          pcp->count -= batch;      }    out:      local_irq_restore(flags);  }

先看一下free_pages_prepare()的實現:

【file:/mm/page_alloc.c】  static bool free_pages_prepare(struct page *page, unsigned int order)  {      int i;      int bad = 0;        trace_mm_page_free(page, order);      kmemcheck_free_shadow(page, order);        if (PageAnon(page))          page->mapping = NULL;      for (i = 0; i < (1 << order); i++)          bad += free_pages_check(page + i);      if (bad)          return false;        if (!PageHighMem(page)) {          debug_check_no_locks_freed(page_address(page),                         PAGE_SIZE << order);          debug_check_no_obj_freed(page_address(page),                         PAGE_SIZE << order);      }      arch_free_page(page, order);      kernel_map_pages(page, 1 << order, 0);        return true;  }

其中trace_mm_page_free()用於trace追蹤機制;而kmemcheck_free_shadow()用於記憶體檢測工具kmemcheck,如果未定義CONFIG_KMEMCHECK的情況下,它是一個空函數。接著後面的PageAnon()等都是用於檢查頁面狀態的情況,以判斷頁面是否允許釋放,避免錯誤釋放頁面。由此可知該函數主要作用是檢查和調試。

接著回到free_hot_cold_page()函數中,get_pageblock_migratetype()和set_freepage_migratetype()分別是獲取和設置頁面的遷移類型,即設置到page->index;local_irq_save()和末尾的local_irq_restore()則用於保存恢復中斷請求標識。

if (migratetype >= MIGRATE_PCPTYPES) {        if (unlikely(is_migrate_isolate(migratetype))) {            free_one_page(zone, page, 0, migratetype);            goto out;        }        migratetype = MIGRATE_MOVABLE;    }

這裡面的MIGRATE_PCPTYPES用來表示每CPU頁框高速快取的數據結構中的鏈表的遷移類型數目,如果某個頁面類型大於MIGRATE_PCPTYPES則表示其可掛到可移動列表中,如果遷移類型是MIGRATE_ISOLATE則直接將該其釋放到夥伴管理演算法中。

末尾部分:

    pcp = &this_cpu_ptr(zone->pageset)->pcp;        if (cold)            list_add_tail(&page->lru, &pcp->lists[migratetype]);        else            list_add(&page->lru, &pcp->lists[migratetype]);        pcp->count++;        if (pcp->count >= pcp->high) {            unsigned long batch = ACCESS_ONCE(pcp->batch);            free_pcppages_bulk(zone, batch, pcp);            pcp->count -= batch;        }

其中pcp表示記憶體管理區的每CPU管理結構,cold表示冷熱頁面,如果是冷頁就將其掛接到對應遷移類型的鏈表尾,而若是熱頁則掛接到對應遷移類型的鏈表頭。其中if (pcp->count >= pcp->high)判斷值得注意,其用於如果釋放的頁面超過了每CPU快取的最大頁面數時,則將其批量釋放至夥伴管理演算法中,其中批量數為pcp->batch。

具體分析一下釋放至夥伴管理演算法的實現free_pcppages_bulk():

【file:/mm/page_alloc.c】  /*   * Frees a number of pages from the PCP lists   * Assumes all pages on list are in same zone, and of same order.   * count is the number of pages to free.   *   * If the zone was previously in an "all pages pinned" state then look to   * see if this freeing clears that state.   *   * And clear the zone's pages_scanned counter, to hold off the "all pages are   * pinned" detection logic.   */  static void free_pcppages_bulk(struct zone *zone, int count,                      struct per_cpu_pages *pcp)  {      int migratetype = 0;      int batch_free = 0;      int to_free = count;        spin_lock(&zone->lock);      zone->pages_scanned = 0;        while (to_free) {          struct page *page;          struct list_head *list;            /*           * Remove pages from lists in a round-robin fashion. A           * batch_free count is maintained that is incremented when an           * empty list is encountered. This is so more pages are freed           * off fuller lists instead of spinning excessively around empty           * lists           */          do {              batch_free++;              if (++migratetype == MIGRATE_PCPTYPES)                  migratetype = 0;              list = &pcp->lists[migratetype];          } while (list_empty(list));            /* This is the only non-empty list. Free them all. */          if (batch_free == MIGRATE_PCPTYPES)              batch_free = to_free;            do {              int mt; /* migratetype of the to-be-freed page */                page = list_entry(list->prev, struct page, lru);              /* must delete as __free_one_page list manipulates */              list_del(&page->lru);              mt = get_freepage_migratetype(page);              /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */              __free_one_page(page, zone, 0, mt);              trace_mm_page_pcpu_drain(page, 0, mt);              if (likely(!is_migrate_isolate_page(page))) {                  __mod_zone_page_state(zone, NR_FREE_PAGES, 1);                  if (is_migrate_cma(mt))                      __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);              }          } while (--to_free && --batch_free && !list_empty(list));      }      spin_unlock(&zone->lock);  }

裡面while大循環用於計數釋放指定批量數的頁面。其中釋放方式是先自MIGRATE_UNMOVABLE遷移類型起(止於MIGRATE_PCPTYPES遷移類型),遍歷各個鏈表統計其鏈表中頁面數:

do {        batch_free++;        if (++migratetype == MIGRATE_PCPTYPES)            migratetype = 0;        list = &pcp->lists[migratetype];    } while (list_empty(list));

如果只有MIGRATE_PCPTYPES遷移類型的鏈表為非空鏈表,則全部頁面將從該鏈表中釋放。

後面的do{}while()裡面,其先將頁面從lru鏈表中去除,然後獲取頁面的遷移類型,通過__free_one_page()釋放頁面,最後使用__mod_zone_page_state()修改管理區的狀態值。

著重分析一下__free_one_page()的實現:

【file:/mm/page_alloc.c】  /*   * Freeing function for a buddy system allocator.   *   * The concept of a buddy system is to maintain direct-mapped table   * (containing bit values) for memory blocks of various "orders".   * The bottom level table contains the map for the smallest allocatable   * units of memory (here, pages), and each level above it describes   * pairs of units from the levels below, hence, "buddies".   * At a high level, all that happens here is marking the table entry   * at the bottom level available, and propagating the changes upward   * as necessary, plus some accounting needed to play nicely with other   * parts of the VM system.   * At each level, we keep a list of pages, which are heads of continuous   * free pages of length of (1 << order) and marked with _mapcount   * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)   * field.   * So when we are allocating or freeing one, we can derive the state of the   * other. That is, if we allocate a small block, and both were   * free, the remainder of the region must be split into blocks.   * If a block is freed, and its buddy is also free, then this   * triggers coalescing into a block of larger size.   *   * -- nyc   */    static inline void __free_one_page(struct page *page,          struct zone *zone, unsigned int order,          int migratetype)  {      unsigned long page_idx;      unsigned long combined_idx;      unsigned long uninitialized_var(buddy_idx);      struct page *buddy;        VM_BUG_ON(!zone_is_initialized(zone));        if (unlikely(PageCompound(page)))          if (unlikely(destroy_compound_page(page, order)))              return;        VM_BUG_ON(migratetype == -1);        page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);        VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);      VM_BUG_ON_PAGE(bad_range(zone, page), page);        while (order < MAX_ORDER-1) {          buddy_idx = __find_buddy_index(page_idx, order);          buddy = page + (buddy_idx - page_idx);          if (!page_is_buddy(page, buddy, order))              break;          /*           * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,           * merge with it and move up one order.           */          if (page_is_guard(buddy)) {              clear_page_guard_flag(buddy);              set_page_private(page, 0);              __mod_zone_freepage_state(zone, 1 << order,                            migratetype);          } else {              list_del(&buddy->lru);              zone->free_area[order].nr_free--;              rmv_page_order(buddy);          }          combined_idx = buddy_idx & page_idx;          page = page + (combined_idx - page_idx);          page_idx = combined_idx;          order++;      }      set_page_order(page, order);        /*       * If this is not the largest possible page, check if the buddy       * of the next-highest order is free. If it is, it's possible       * that pages are being freed that will coalesce soon. In case,       * that is happening, add the free page to the tail of the list       * so it's less likely to be used soon and more likely to be merged       * as a higher order page       */      if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {          struct page *higher_page, *higher_buddy;          combined_idx = buddy_idx & page_idx;          higher_page = page + (combined_idx - page_idx);          buddy_idx = __find_buddy_index(combined_idx, order + 1);          higher_buddy = higher_page + (buddy_idx - combined_idx);          if (page_is_buddy(higher_page, higher_buddy, order + 1)) {              list_add_tail(&page->lru,                  &zone->free_area[order].free_list[migratetype]);              goto out;          }      }        list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);  out:      zone->free_area[order].nr_free++;  }

於while (order < MAX_ORDER-1)前面主要是對釋放的頁面進行檢查校驗操作。而while循環內,通過__find_buddy_index()獲取與當前釋放的頁面處於同一階的夥伴頁面索引值,同時藉此索引值計算出夥伴頁面地址,並做夥伴頁面檢查以確定其是否可以合併,若否則退出;接著if (page_is_guard(buddy))用於對頁面的debug_flags成員做檢查,由於未配置CONFIG_DEBUG_PAGEALLOC,page_is_guard()固定返回false;則剩下的操作主要就是將頁面從分配鏈中摘除,同時將頁面合併並將其處於的階提升一級。

退出while循環後,通過set_page_order()設置頁面最終可合併成為的管理階。最後判斷當前合併的頁面是否為最大階,否則將頁面放至夥伴管理鏈表的末尾,避免其過早被分配,得以機會進一步與高階頁面進行合併。末了,將最後的掛入的階的空閑計數加1。

至此夥伴管理演算法的頁面釋放完畢。

而__free_pages_ok()的頁面釋放實現調用棧則是:

__free_pages_ok()    —>free_one_page()    —>__free_one_page()

殊途同歸,最終還是__free_one_page()來釋放,具體的過程就不再仔細分析了。