項目實戰 DeepLabV1,V2,V3 Google三大語義分割演算法源碼解析

  • 2019 年 12 月 9 日
  • 筆記

前言

演算法和工程是演算法工程師不可缺少的兩種能力,之前我介紹了DeepLab V1,V2, V3,但總是感覺少了點什麼?只有Paper,沒有源碼那不相當於是紙上談兵了,所以今天嘗試結合論文的源碼來進行仔細的分析這三個演算法。等我們分析清楚這三個演算法之後,有機會再解析一下DeepLabV3。由於最近正在看Pytorch版本的《動手學深度學習》,不妨用Pytorch的源碼來進行分析。我分析的源碼均來自這個Pytorch工程:https://github.com/kazuto1011/deeplab-pytorch/tree/master/libs/models

DeepLab V1源碼分析

DeepLab V1的演算法原理可以看我之前的推文,地址是:https://mp.weixin.qq.com/s/rvP8-Y-CRuq4HFzR0qJWcg 。我們今天解析的DeepLab系列網路模型是在ResNet殘差模組的基礎上配合空洞卷積實現的,對於DeepLab V1, 第一層為普通卷積,stride = 2,緊跟著 stride = 2 的 max-pooling,然後一個普通的 bottleneck ,一個 stride = 2 的 bottleneck,然後 dilation =2、dilation =4 的bottleneck。

from __future__ import absolute_import, print_function    import torch  import torch.nn as nn  import torch.nn.functional as F    # 定義DeepLabV1的網路結構  class DeepLabV1(nn.Sequential):      """      DeepLab v1: Dilated ResNet + 1x1 Conv      Note that this is just a container for loading the pretrained COCO model and not mentioned as "v1" in papers.      """        def __init__(self, n_classes, n_blocks):          super(DeepLabV1, self).__init__()          ch = [64 * 2 ** p for p in range(6)]          self.add_module("layer1", _Stem(ch[0]))          self.add_module("layer2", _ResLayer(n_blocks[0], ch[0], ch[2], 1, 1))          self.add_module("layer3", _ResLayer(n_blocks[1], ch[2], ch[3], 2, 1))          self.add_module("layer4", _ResLayer(n_blocks[2], ch[3], ch[4], 1, 2))          self.add_module("layer5", _ResLayer(n_blocks[3], ch[4], ch[5], 1, 4))          self.add_module("fc", nn.Conv2d(2048, n_classes, 1))    # 這裡是看一下是使用torch的nn模組中BatchNorm還是在encoding文件中定義的BatchNorm    try:      from encoding.nn import SyncBatchNorm        _BATCH_NORM = SyncBatchNorm  except:      _BATCH_NORM = nn.BatchNorm2d    _BOTTLENECK_EXPANSION = 4    # 定義卷積+BN+ReLU的組件  class _ConvBnReLU(nn.Sequential):      """      Cascade of 2D convolution, batch norm, and ReLU.      """        BATCH_NORM = _BATCH_NORM        def __init__(              self, in_ch, out_ch, kernel_size, stride, padding, dilation, relu=True      ):          super(_ConvBnReLU, self).__init__()          self.add_module(              "conv",              nn.Conv2d(                  in_ch, out_ch, kernel_size, stride, padding, dilation, bias=False              ),          )          self.add_module("bn", _BATCH_NORM(out_ch, eps=1e-5, momentum=0.999))            if relu:              self.add_module("relu", nn.ReLU())      # 定義Bottleneck,先1*1卷積降維,然後使用3*3卷積,最後再1*1卷積升維,然後再shortcut連接。  # 降維到多少是由_BOTTLENECK_EXPANSION參數決定的,這是ResNet的Bottleneck。  class _Bottleneck(nn.Module):      """      Bottleneck block of MSRA ResNet.      """        def __init__(self, in_ch, out_ch, stride, dilation, downsample):          super(_Bottleneck, self).__init__()          mid_ch = out_ch // _BOTTLENECK_EXPANSION          self.reduce = _ConvBnReLU(in_ch, mid_ch, 1, stride, 0, 1, True)          self.conv3x3 = _ConvBnReLU(mid_ch, mid_ch, 3, 1, dilation, dilation, True)          self.increase = _ConvBnReLU(mid_ch, out_ch, 1, 1, 0, 1, False)          self.shortcut = (              _ConvBnReLU(in_ch, out_ch, 1, stride, 0, 1, False)              if downsample              else lambda x: x  # identity          )        def forward(self, x):          h = self.reduce(x)          h = self.conv3x3(h)          h = self.increase(h)          h += self.shortcut(x)          return F.relu(h)    # 定義ResLayer,整個DeepLabv1是用ResLayer堆疊起來的,下取樣是在每個ResLayer的第一個  # Bottleneck發生的。  class _ResLayer(nn.Sequential):      """      Residual layer with multi grids      """        def __init__(self, n_layers, in_ch, out_ch, stride, dilation, multi_grids=None):          super(_ResLayer, self).__init__()            if multi_grids is None:              multi_grids = [1 for _ in range(n_layers)]          else:              assert n_layers == len(multi_grids)            # Downsampling is only in the first block          for i in range(n_layers):              self.add_module(                  "block{}".format(i + 1),                  _Bottleneck(                      in_ch=(in_ch if i == 0 else out_ch),                      out_ch=out_ch,                      stride=(stride if i == 0 else 1),                      dilation=dilation * multi_grids[i],                      downsample=(True if i == 0 else False),                  ),              )    # 在進入ResLayer之前,先用7*7的卷積核在原圖滑動,增大感受野。padding方式設為same,大小不變。  # Pool層的核大小為3,步長為2,這會導致特徵圖的解析度發生變化。  class _Stem(nn.Sequential):      """      The 1st conv layer.      Note that the max pooling is different from both MSRA and FAIR ResNet.      """        def __init__(self, out_ch):          super(_Stem, self).__init__()          self.add_module("conv1", _ConvBnReLU(3, out_ch, 7, 2, 3, 1))          self.add_module("pool", nn.MaxPool2d(3, 2, 1, ceil_mode=True))    # 相當於Reshape,網路並沒有用到  class _Flatten(nn.Module):      def forward(self, x):          return x.view(x.size(0), -1)    # 主函數,輸出構建的DeepLab V1模型的結構還有原始影像解析度和結果影像的解析度  if __name__ == "__main__":      model = DeepLabV1(n_classes=21, n_blocks=[3, 4, 23, 3])      #model.eval()      image = torch.randn(1, 3, 513, 513)        print(model)      print("input:", image.shape)      print("output:", model(image).shape)  

我們看一下網路的輸入和輸出特徵圖尺寸:

input: torch.Size([1, 3, 513, 513])  output: torch.Size([1, 21, 65, 65])  

網路結構已經非常清晰了,可以直接運行Python程式碼列印出網路結構或者按照我的源碼注釋來理解。注意,訓練的時候ground truth要resize到和模型的輸出特徵圖尺寸一樣大才可以。

DeepLab V2源碼分析

DeepLab V2的論文解讀請看我前面發的文章:https://mp.weixin.qq.com/s/ylv3QfOe_BOuVuxQTd_m_g 。簡單的說,DeepLab V2就是DeepLab V1的基礎上加了一個ASPP模組,這是一個類似於Inception模組的結構,包含不同膨脹係數的空洞卷積,增強模型識別同一物體的多尺度能力。這裡仍然只分析源碼:為了方便理解把上篇文章中的ASPP模組的示意圖放在這裡:

在這裡插入圖片描述

from __future__ import absolute_import, print_function    import torch  import torch.nn as nn  import torch.nn.functional as F      # 定義ASPP模組,這是DeepLab V2和V1的主要區別,可以看到其他部分和V1的程式碼一模一樣  class _ASPP(nn.Module):      """      Atrous spatial pyramid pooling (ASPP)      """        def __init__(self, in_ch, out_ch, rates):          super(_ASPP, self).__init__()          for i, rate in enumerate(rates):              self.add_module(                  "c{}".format(i),                  nn.Conv2d(in_ch, out_ch, 3, 1, padding=rate, dilation=rate, bias=True),              )            for m in self.children():              nn.init.normal_(m.weight, mean=0, std=0.01)              nn.init.constant_(m.bias, 0)        def forward(self, x):          return sum([stage(x) for stage in self.children()])      class DeepLabV2(nn.Sequential):      """      DeepLab v2: Dilated ResNet + ASPP      Output stride is fixed at 8      """        def __init__(self, n_classes, n_blocks, atrous_rates):          super(DeepLabV2, self).__init__()          ch = [64 * 2 ** p for p in range(6)]          self.add_module("layer1", _Stem(ch[0]))          self.add_module("layer2", _ResLayer(n_blocks[0], ch[0], ch[2], 1, 1))          self.add_module("layer3", _ResLayer(n_blocks[1], ch[2], ch[3], 2, 1))          self.add_module("layer4", _ResLayer(n_blocks[2], ch[3], ch[4], 1, 2))          self.add_module("layer5", _ResLayer(n_blocks[3], ch[4], ch[5], 1, 4))          self.add_module("aspp", _ASPP(ch[5], n_classes, atrous_rates))        def freeze_bn(self):          for m in self.modules():              if isinstance(m, _ConvBnReLU.BATCH_NORM):                  m.eval()      try:      from encoding.nn import SyncBatchNorm        _BATCH_NORM = SyncBatchNorm  except:      _BATCH_NORM = nn.BatchNorm2d    _BOTTLENECK_EXPANSION = 4        class _ConvBnReLU(nn.Sequential):      """      Cascade of 2D convolution, batch norm, and ReLU.      """        BATCH_NORM = _BATCH_NORM        def __init__(              self, in_ch, out_ch, kernel_size, stride, padding, dilation, relu=True      ):          super(_ConvBnReLU, self).__init__()          self.add_module(              "conv",              nn.Conv2d(                  in_ch, out_ch, kernel_size, stride, padding, dilation, bias=False              ),          )          self.add_module("bn", _BATCH_NORM(out_ch, eps=1e-5, momentum=0.999))            if relu:              self.add_module("relu", nn.ReLU())      class _Bottleneck(nn.Module):      """      Bottleneck block of MSRA ResNet.      """        def __init__(self, in_ch, out_ch, stride, dilation, downsample):          super(_Bottleneck, self).__init__()          mid_ch = out_ch // _BOTTLENECK_EXPANSION          self.reduce = _ConvBnReLU(in_ch, mid_ch, 1, stride, 0, 1, True)          self.conv3x3 = _ConvBnReLU(mid_ch, mid_ch, 3, 1, dilation, dilation, True)          self.increase = _ConvBnReLU(mid_ch, out_ch, 1, 1, 0, 1, False)          self.shortcut = (              _ConvBnReLU(in_ch, out_ch, 1, stride, 0, 1, False)              if downsample              else lambda x: x  # identity          )        def forward(self, x):          h = self.reduce(x)          h = self.conv3x3(h)          h = self.increase(h)          h += self.shortcut(x)          return F.relu(h)      class _ResLayer(nn.Sequential):      """      Residual layer with multi grids      """        def __init__(self, n_layers, in_ch, out_ch, stride, dilation, multi_grids=None):          super(_ResLayer, self).__init__()            if multi_grids is None:              multi_grids = [1 for _ in range(n_layers)]          else:              assert n_layers == len(multi_grids)            # Downsampling is only in the first block          for i in range(n_layers):              self.add_module(                  "block{}".format(i + 1),                  _Bottleneck(                      in_ch=(in_ch if i == 0 else out_ch),                      out_ch=out_ch,                      stride=(stride if i == 0 else 1),                      dilation=dilation * multi_grids[i],                      downsample=(True if i == 0 else False),                  ),              )      class _Stem(nn.Sequential):      """      The 1st conv layer.      Note that the max pooling is different from both MSRA and FAIR ResNet.      """        def __init__(self, out_ch):          super(_Stem, self).__init__()          self.add_module("conv1", _ConvBnReLU(3, out_ch, 7, 2, 3, 1))          self.add_module("pool", nn.MaxPool2d(3, 2, 1, ceil_mode=True))      if __name__ == "__main__":      model = DeepLabV2(          n_classes=21, n_blocks=[3, 4, 23, 3], atrous_rates=[6, 12, 18, 24]      )      model.eval()      image = torch.randn(1, 3, 513, 513)        print(model)      print("input:", image.shape)      print("output:", model(image).shape)  

可以看到DeepLab V2的程式碼除了ASPP模組,其他部分和V1完全一樣,所以就沒什麼好解釋的了。但需要注意的一個點是,訓練的時候,DeepLabV2的學習率採用了Poly的策略,公式為: ,當時,模型可以取得不普通的分段學習策略MAP值高1.17%的效果。這部分作者也在他的程式碼中實現了,如下所示:

作者:Uno Whoiam  鏈接:https://zhuanlan.zhihu.com/p/68531147  來源:知乎  著作權歸作者所有。商業轉載請聯繫作者獲得授權,非商業轉載請註明出處。    from torch.optim.lr_scheduler import _LRScheduler      class PolynomialLR(_LRScheduler):      def __init__(self, optimizer, step_size, iter_max, power, last_epoch=-1):          self.step_size = step_size          self.iter_max = iter_max          self.power = power          super(PolynomialLR, self).__init__(optimizer, last_epoch)        def polynomial_decay(self, lr):          return lr * (1 - float(self.last_epoch) / self.iter_max) ** self.power        def get_lr(self):          if (              (self.last_epoch == 0)              or (self.last_epoch % self.step_size != 0)              or (self.last_epoch > self.iter_max)          ):              return [group["lr"] for group in self.optimizer.param_groups]          return [self.polynomial_decay(lr) for lr in self.base_lrs]  

可以看到這個類是直接繼承了Pytorch中的學習率調整類_LRScheduler,可以方便的在每個epoch進行學習率調整。

最後網路的輸入解析度和輸出解析度和DeepLab V1一樣,具體訓練和數據製作請看作者的github工程:https://github.com/kazuto1011/deeplab-pytorch/tree/master/libs/models 。

DeepLab V3源碼分析

DeepLab V3論文原理請看我之前發的推文:https://mp.weixin.qq.com/s/D9OX89mklaU4tv74OZMqNg 。這裡再簡單回歸一下DeepLab V3使用的關鍵Trick。

  • 將BN層加到了ASPP模組中。
  • 使用了Multi-Grid策略,即在模型後端多加幾層不同rate的空洞卷積。
  • 具有不同 atrous rates 的 ASPP 能夠有效的捕獲多尺度資訊。不過,論文發現,隨著sampling rate的增加,有效filter特徵權重(即有效特徵區域,而不是補零區域的權重)的數量會變小,極端情況下,當空洞卷積的 rate 和 feature map 的大小一致時,卷積會退化為卷積。為了解決這一問題,並將全局內容資訊整合到模型中,則採用影像級特徵。即,採用全局平均池化(global average pooling)對模型的 feature map 進行處理,將得到的影像級特徵輸入到一個 1×1 convolution with 256 filters(加入 batch normalization)中,然後將特徵進行雙線性上取樣(bilinearly upsample)到特定的空間維度。

DeepLab V3的源碼如下:

from __future__ import absolute_import, print_function    from collections import OrderedDict    import torch  import torch.nn as nn  import torch.nn.functional as F    # 全局平均池化,將得到的影像特徵輸入到一個擁有256個通道的1*1卷積中,最後將特徵進行  # 雙線性上取樣到特定的維度(就是輸入到ImagePool之前特徵圖的維度)  class _ImagePool(nn.Module):      def __init__(self, in_ch, out_ch):          super().__init__()          self.pool = nn.AdaptiveAvgPool2d(1)          self.conv = _ConvBnReLU(in_ch, out_ch, 1, 1, 0, 1)        def forward(self, x):          _, _, H, W = x.shape          h = self.pool(x)          h = self.conv(h)          h = F.interpolate(h, size=(H, W), mode="bilinear", align_corners=False)          return h    # ASPP模組,DeepLabV3改進後的,新增了1*1卷積以及影像全局池化。  class _ASPP(nn.Module):      """      Atrous spatial pyramid pooling with image-level feature      """        def __init__(self, in_ch, out_ch, rates):          super(_ASPP, self).__init__()          self.stages = nn.Module()          self.stages.add_module("c0", _ConvBnReLU(in_ch, out_ch, 1, 1, 0, 1))          for i, rate in enumerate(rates):              self.stages.add_module(                  "c{}".format(i + 1),                  _ConvBnReLU(in_ch, out_ch, 3, 1, padding=rate, dilation=rate),              )          self.stages.add_module("imagepool", _ImagePool(in_ch, out_ch))        def forward(self, x):          return torch.cat([stage(x) for stage in self.stages.children()], dim=1)    # 完整的DeepLabV3的結構,使用帶空洞卷積的ResNet+multi-grid策略+改進後的ASPP  class DeepLabV3(nn.Sequential):      """      DeepLab v3: Dilated ResNet with multi-grid + improved ASPP      """        def __init__(self, n_classes, n_blocks, atrous_rates, multi_grids, output_stride):          super(DeepLabV3, self).__init__()            # Stride and dilation          if output_stride == 8:              s = [1, 2, 1, 1]              d = [1, 1, 2, 4]          elif output_stride == 16:              s = [1, 2, 2, 1]              d = [1, 1, 1, 2]            ch = [64 * 2 ** p for p in range(6)]          self.add_module("layer1", _Stem(ch[0]))          self.add_module("layer2", _ResLayer(n_blocks[0], ch[0], ch[2], s[0], d[0]))          self.add_module("layer3", _ResLayer(n_blocks[1], ch[2], ch[3], s[1], d[1]))          self.add_module("layer4", _ResLayer(n_blocks[2], ch[3], ch[4], s[2], d[2]))          self.add_module(              "layer5", _ResLayer(n_blocks[3], ch[4], ch[5], s[3], d[3], multi_grids)          )          self.add_module("aspp", _ASPP(ch[5], 256, atrous_rates))          # 連接所有分支的最終特徵,輸入到256個通道的1*1卷積中,並加入BN,再進入最終的1*1卷積,          # 得到logits結果。          concat_ch = 256 * (len(atrous_rates) + 2)          self.add_module("fc1", _ConvBnReLU(concat_ch, 256, 1, 1, 0, 1))          self.add_module("fc2", nn.Conv2d(256, n_classes, kernel_size=1))      try:      from encoding.nn import SyncBatchNorm        _BATCH_NORM = SyncBatchNorm  except:      _BATCH_NORM = nn.BatchNorm2d    _BOTTLENECK_EXPANSION = 4    # 和DeepLabV1定義一樣  class _ConvBnReLU(nn.Sequential):      """      Cascade of 2D convolution, batch norm, and ReLU.      """        BATCH_NORM = _BATCH_NORM        def __init__(              self, in_ch, out_ch, kernel_size, stride, padding, dilation, relu=True      ):          super(_ConvBnReLU, self).__init__()          self.add_module(              "conv",              nn.Conv2d(                  in_ch, out_ch, kernel_size, stride, padding, dilation, bias=False              ),          )          self.add_module("bn", _BATCH_NORM(out_ch, eps=1e-5, momentum=0.999))            if relu:              self.add_module("relu", nn.ReLU())      class _Bottleneck(nn.Module):      """      Bottleneck block of MSRA ResNet.      """        def __init__(self, in_ch, out_ch, stride, dilation, downsample):          super(_Bottleneck, self).__init__()          mid_ch = out_ch // _BOTTLENECK_EXPANSION          self.reduce = _ConvBnReLU(in_ch, mid_ch, 1, stride, 0, 1, True)          self.conv3x3 = _ConvBnReLU(mid_ch, mid_ch, 3, 1, dilation, dilation, True)          self.increase = _ConvBnReLU(mid_ch, out_ch, 1, 1, 0, 1, False)          self.shortcut = (              _ConvBnReLU(in_ch, out_ch, 1, stride, 0, 1, False)              if downsample              else lambda x: x  # identity          )        def forward(self, x):          h = self.reduce(x)          h = self.conv3x3(h)          h = self.increase(h)          h += self.shortcut(x)          return F.relu(h)      class _ResLayer(nn.Sequential):      """      Residual layer with multi grids      """        def __init__(self, n_layers, in_ch, out_ch, stride, dilation, multi_grids=None):          super(_ResLayer, self).__init__()            if multi_grids is None:              multi_grids = [1 for _ in range(n_layers)]          else:              assert n_layers == len(multi_grids)            # Downsampling is only in the first block          for i in range(n_layers):              self.add_module(                  "block{}".format(i + 1),                  _Bottleneck(                      in_ch=(in_ch if i == 0 else out_ch),                      out_ch=out_ch,                      stride=(stride if i == 0 else 1),                      dilation=dilation * multi_grids[i],                      downsample=(True if i == 0 else False),                  ),              )      class _Stem(nn.Sequential):      """      The 1st conv layer.      Note that the max pooling is different from both MSRA and FAIR ResNet.      """        def __init__(self, out_ch):          super(_Stem, self).__init__()          self.add_module("conv1", _ConvBnReLU(3, out_ch, 7, 2, 3, 1))          self.add_module("pool", nn.MaxPool2d(3, 2, 1, ceil_mode=True))      if __name__ == "__main__":      model = DeepLabV3(          n_classes=21,          n_blocks=[3, 4, 23, 3],          atrous_rates=[6, 12, 18],          multi_grids=[1, 2, 4],          output_stride=8,      )      model.eval()      image = torch.randn(1, 3, 513, 513)        print(model)      print("input:", image.shape)      print("output:", model(image).shape)  

和V1,V2的區別在源碼里詳細注釋了。最後DeepLab V3得到輸出結果和V1/V2得到輸出結果是一致的,訓練標籤的設置也是一致的。

結論

通過源碼解析,應該可以對DeepLab V1,V2,V3的原理和特徵圖維度變化以及 訓練有清楚的認識了,所以暫時就講到這裡了。之後有時間再補上DeepLab V3 Plus的論文理解和源碼解析語義分割就算暫時完結了。之後準備做目標檢測/分類網路的解析,敬請期待吧。

程式碼鏈接

https://github.com/kazuto1011/deeplab-pytorch/tree/master/libs/models