都給你整理好了,Java各種隨機方式對比

  • 2019 年 12 月 2 日
  • 筆記

1. Math.random() 靜態方法

產生的隨機數是 0 – 1 之間的一個 double,即 0 <= random <= 1

for (int i = 0; i < 10; i++) {    System.out.println(Math.random());  }

結果:

0.3598613895606426 0.2666778145365811 0.25090731064243355 0.011064998061666276 0.600686228175639 0.9084006027629496 0.12700524654847833 0.6084605849069343 0.7290804782514261 0.9923831908303121

實現原理:

When this method is first called, it creates a single new pseudorandom-number generator, exactly as if by the expression new java.util.Random() This new pseudorandom-number generator is used thereafter for all calls to this method and is used nowhere else.

當第一次調用 Math.random() 方法時,自動創建了一個偽隨機數生成器,實際上用的是 new java.util.Random()。 當接下來繼續調用 Math.random() 方法時,就會使用這個新的偽隨機數生成器

源碼如下:

public static double random() {      Random rnd = randomNumberGenerator;      if (rnd == null) rnd = initRNG(); // 第一次調用,創建一個偽隨機數生成器      return rnd.nextDouble();  }    private static synchronized Random initRNG() {      Random rnd = randomNumberGenerator;      return (rnd == null) ? (randomNumberGenerator = new Random()) : rnd; // 實際上用的是new java.util.Random()  }

This method is properly synchronized to allow correct use by more than one thread. However, if many threads need to generate pseudorandom numbers at a great rate, it may reduce contention for each thread to have its own pseudorandom-number generator.

initRNG() 方法是 synchronized 的,因此在多執行緒情況下,只有一個執行緒會負責創建偽隨機數生成器(使用當前時間作為種子),其他執行緒則利用該偽隨機數生成器產生隨機數。

因此 Math.random() 方法是執行緒安全的。

什麼情況下隨機數的生成執行緒不安全:

  • 執行緒1在第一次調用 random() 時產生一個生成器 generator1,使用當前時間作為種子。
  • 執行緒2在第一次調用 random() 時產生一個生成器 generator2,使用當前時間作為種子。
  • 碰巧 generator1generator2 使用相同的種子,導致 generator1 以後產生的隨機數每次都和 generator2 以後產生的隨機數相同。

什麼情況下隨機數的生成執行緒安全:Math.random() 靜態方法使用

  • 執行緒1在第一次調用 random() 時產生一個生成器 generator1,使用當前時間作為種子。
  • 執行緒2在第一次調用 random() 時發現已經有一個生成器 generator1,則直接使用生成器 generator1
public class JavaRandom {      public static void main(String args[]) {          new MyThread().start();          new MyThread().start();      }  }  class MyThread extends Thread {      public void run() {          for (int i = 0; i < 2; i++) {              System.out.println(Thread.currentThread().getName() + ": " + Math.random());          }      }  }

結果:

Thread-1: 0.8043581595645333 Thread-0: 0.9338269554390357 Thread-1: 0.5571569413128877 Thread-0: 0.37484586843392464

2. java.util.Random 工具類

基本演算法:linear congruential pseudorandom number generator (LGC) 線性同餘法偽隨機數生成器

缺點:可預測

An attacker will simply compute the seed from the output values observed. This takes significantly less time than 2^48 in the case of java.util.Random. 從輸出中可以很容易計算出種子值。 It is shown that you can predict future Random outputs observing only two(!) output values in time roughly 2^16. 因此可以預測出下一個輸出的隨機數。 You should never use an LCG for security-critical purposes. 在注重資訊安全的應用中,不要使用 LCG 演算法生成隨機數,請使用 SecureRandom。

使用:

Random random = new Random();    for (int i = 0; i < 5; i++) {      System.out.println(random.nextInt());  }

結果:

-24520987 -96094681 -952622427 300260419 1489256498

Random類默認使用當前系統時鐘作為種子:

public Random() {      this(seedUniquifier() ^ System.nanoTime());  }    public Random(long seed) {      if (getClass() == Random.class)          this.seed = new AtomicLong(initialScramble(seed));      else {          // subclass might have overriden setSeed          this.seed = new AtomicLong();          setSeed(seed);      }  }

Random類提供的方法:API

  • nextBoolean() – 返回均勻分布的 true 或者 false
  • nextBytes(byte[] bytes)
  • nextDouble() – 返回 0.0 到 1.0 之間的均勻分布的 double
  • nextFloat() – 返回 0.0 到 1.0 之間的均勻分布的 float
  • nextGaussian()- 返回 0.0 到 1.0 之間的高斯分布(即正態分布)的 double
  • nextInt() – 返回均勻分布的 int
  • nextInt(int n) – 返回 0 到 n 之間的均勻分布的 int (包括 0,不包括 n)
  • nextLong() – 返回均勻分布的 long
  • setSeed(long seed) – 設置種子

只要種子一樣,產生的隨機數也一樣:因為種子確定,隨機數演算法也確定,因此輸出是確定的!

Random random1 = new Random(10000);  Random random2 = new Random(10000);    for (int i = 0; i < 5; i++) {      System.out.println(random1.nextInt() + " = " + random2.nextInt());  }

結果:

-498702880 = -498702880 -858606152 = -858606152 1942818232 = 1942818232 -1044940345 = -1044940345 1588429001 = 1588429001

3. java.util.concurrent.ThreadLocalRandom 工具類

ThreadLocalRandom 是 JDK 7 之後提供,也是繼承至 java.util.Random。

private static final ThreadLocal<ThreadLocalRandom> localRandom =      new ThreadLocal<ThreadLocalRandom>() {          protected ThreadLocalRandom initialValue() {              return new ThreadLocalRandom();          }  };

每一個執行緒有一個獨立的隨機數生成器,用於並發產生隨機數,能夠解決多個執行緒發生的競爭爭奪。效率更高! ThreadLocalRandom 不是直接用 new 實例化,而是第一次使用其靜態方法 current() 得到 ThreadLocal<ThreadLocalRandom> 實例,然後調用 java.util.Random 類提供的方法獲得各種隨機數。

使用:

public class JavaRandom {      public static void main(String args[]) {          new MyThread().start();          new MyThread().start();      }  }  class MyThread extends Thread {      public void run() {          for (int i = 0; i < 2; i++) {              System.out.println(Thread.currentThread().getName() + ": " + ThreadLocalRandom.current().nextDouble());          }      }  }

結果:

Thread-0: 0.13267085355389086 Thread-1: 0.1138484950410098 Thread-0: 0.17187774671469858 Thread-1: 0.9305225910262372

4. java.Security.SecureRandom

也是繼承至 java.util.Random。

Instances of java.util.Random are not cryptographically secure. Consider instead using SecureRandom to get a cryptographically secure pseudo-random number generator for use by security-sensitive applications. SecureRandom takes Random Data from your os (they can be interval between keystrokes etc – most os collect these data store them in files – /dev/random and /dev/urandom in case of linux/solaris) and uses that as the seed. 作業系統收集了一些隨機事件,比如滑鼠點擊,鍵盤點擊等等,SecureRandom 使用這些隨機事件作為種子。

SecureRandom 提供加密的強隨機數生成器 (RNG),要求種子必須是不可預知的,產生非確定性輸出。

SecureRandom 也提供了與實現無關的演算法,因此,調用方(應用程式程式碼)會請求特定的 RNG 演算法並將它傳回到該演算法的 SecureRandom 對象中。

如果僅指定演算法名稱,如下所示:

SecureRandom random = SecureRandom.getInstance("SHA1PRNG");

如果既指定了演算法名稱又指定了包提供程式,如下所示:

SecureRandom random = SecureRandom.getInstance("SHA1PRNG", "SUN");

使用:

SecureRandom random1 = SecureRandom.getInstance("SHA1PRNG");  SecureRandom random2 = SecureRandom.getInstance("SHA1PRNG");    for (int i = 0; i < 5; i++) {      System.out.println(random1.nextInt() + " != " + random2.nextInt());  }

結果:

704046703 != 2117229935 60819811 != 107252259 425075610 != -295395347 682299589 != -1637998900 -1147654329 != 1418666937

5. 隨機字元串

可以使用 Apache Commons-Lang 包中的 RandomStringUtils 類。 Maven 依賴如下:

<dependency>      <groupId>commons-lang</groupId>      <artifactId>commons-lang</artifactId>      <version>2.6</version>  </dependency>

API 參考:https://commons.apache.org/proper/commons-lang/javadocs/api-2.6/org/apache/commons/lang/RandomStringUtils.html

示例:

public class RandomStringDemo {      public static void main(String[] args) {          // Creates a 64 chars length random string of number.          String result = RandomStringUtils.random(64, false, true);          System.out.println("random = " + result);            // Creates a 64 chars length of random alphabetic string.          result = RandomStringUtils.randomAlphabetic(64);          System.out.println("random = " + result);            // Creates a 32 chars length of random ascii string.          result = RandomStringUtils.randomAscii(32);          System.out.println("random = " + result);            // Creates a 32 chars length of string from the defined array of          // characters including numeric and alphabetic characters.          result = RandomStringUtils.random(32, 0, 20, true, true, "qw32rfHIJk9iQ8Ud7h0X".toCharArray());          System.out.println("random = " + result);        }  }

RandomStringUtils 類的實現上也是依賴了 java.util.Random 工具類: