­

day100:MoFang:用戶模型類的創建&Marshmallow模組&使用基本構造器Schema完成數據的序列化轉換和反序列化轉換

目錄

1.用戶模型的創建

2.Marshmallow模組

3.MarshMallow基本構造器:Schema

  1.基於Schema完成數據序列化轉換

  2.基於Schema完成數據反序列化轉換

  3.反序列化階段對數據進行校驗

1.用戶模型的創建

我們當前開發的項目屬於社交類型項目,所以關於用戶的資訊和功能直接貫穿了整個項目。所以此處實現用戶模組功能,我們先把用戶基本資訊構建起來,並通過基本資訊實現用戶註冊登錄相關功能,後面遇到業務再繼續擴展。

1.創建用戶藍圖/註冊用戶藍圖/添加總路由

cd application/apps
python ../../manage.py blue -n users

application/settings/dev.py

# 註冊藍圖
INSTALLED_APPS = [
        "application.apps.home",
        "application.apps.users",
    ]

application/urls.py

from application.utils import include
urlpatterns = [
    include("","home.urls"),
    include("/users","users.urls"), # ***
]

2.用戶相關模型

1.公共模型:BaseModel

application/model/utils.py

from application import db
from datetime import datetime
class BaseModel(db.Model):
    """公共模型"""
    __abstract__ = True # 抽象模型
    id = db.Column(db.Integer, primary_key=True, comment="主鍵ID")
    name = db.Column(db.String(255), default="", comment="名稱/標題")
    is_deleted = db.Column(db.Boolean, default=False, comment="邏輯刪除")
    orders = db.Column(db.Integer, default=0, comment="排序")
    status = db.Column(db.Boolean, default=True, comment="狀態(是否顯示,是否激活)")
    created_time = db.Column(db.DateTime, default=datetime.now, comment="創建時間")
    updated_time = db.Column(db.DateTime, default=datetime.now, onupdate=datetime.now, comment="更新時間")

    def __repr__(self):
        return "<%s: %s>" % (self.__class__.__name__, self.name)

2.用戶模型:User/UserProfile

application/apps/users/models.py

from application.utils.models import BaseModel,db
from werkzeug.security import generate_password_hash, check_password_hash

class User(BaseModel):
    """用戶基本資訊表"""
    __tablename__ = "mf_user"
    name = db.Column(db.String(255), index=True, comment="用戶賬戶")
    nickname = db.Column(db.String(255), comment="用戶昵稱")
    _password = db.Column(db.String(255), comment="登錄密碼")
    age = db.Column(db.SmallInteger, comment="年齡")
    money = db.Column(db.Numeric(7,2), comment="賬戶餘額")
    ip_address = db.Column(db.String(255), default="", index=True, comment="登錄IP")
    intro = db.Column(db.String(500), default="", comment="個性簽名")
    avatar = db.Column(db.String(255), default="", comment="頭像url地址")
    sex = db.Column(db.SmallInteger, default=0, comment="性別" ) # 0表示未設置,保密, 1表示男,2表示女
    email = db.Column(db.String(32), index=True, default="", nullable=False, comment="郵箱地址")
    mobile = db.Column(db.String(32), index=True, nullable=False, comment="手機號碼")
    unique_id = db.Column(db.String(255), index=True, default="", comment="客戶端唯一標記符")
    province = db.Column(db.String(255), default="", comment="省份")
    city = db.Column(db.String(255), default="", comment="城市")
    area = db.Column(db.String(255), default="", comment="地區")
    info = db.relationship('UserProfile', backref='user', uselist=False)

    @property
    def password(self):
        return self._password

    @password.setter
    def password(self, rawpwd):
        """密碼加密"""
        self._password = generate_password_hash(rawpwd)

    def check_password(self, rawpwd):
        """驗證密碼"""
        return check_password_hash(self.password, rawpwd)


class UserProfile(BaseModel):
    """用戶詳情資訊表"""
    __tablename__ = "mf_user_profile"
    user_id = db.Column(db.Integer,db.ForeignKey('mf_user.id'), comment="用戶ID")
    education = db.Column(db.Integer, comment="學歷教育")
    middle_school = db.Column(db.String(255), default="", comment="初中/中專")
    high_school = db.Column(db.String(255), default="", comment="高中/高職")
    college_school = db.Column(db.String(255), default="", comment="大學/大專")
    profession_cate = db.Column(db.String(255), default="", comment="職業類型")
    profession_info = db.Column(db.String(255), default="", comment="職業名稱")
    position = db.Column(db.SmallInteger, default=0, comment="職位/職稱")
    emotion_status = db.Column(db.SmallInteger, default=0, comment="情感狀態")
    birthday =db.Column(db.DateTime, default="", comment="生日")
    hometown_province = db.Column(db.String(255), default="", comment="家鄉省份")
    hometown_city = db.Column(db.String(255), default="", comment="家鄉城市")
    hometown_area = db.Column(db.String(255), default="", comment="家鄉地區")
    hometown_address = db.Column(db.String(255), default="", comment="家鄉地址")
    living_province = db.Column(db.String(255), default="", comment="現居住省份")
    living_city = db.Column(db.String(255), default="", comment="現居住城市")
    living_area = db.Column(db.String(255), default="", comment="現居住地區")
    living_address = db.Column(db.String(255), default="", comment="現居住地址")

執行資料庫遷移命令

cd ../..  # 切換工作目錄會到項目根目錄,manage.py所在目錄下
python manage.py db init
python manage.py db migrate -m "users table"
python manage.py db upgrade

3.註冊功能的實現:手機號碼唯一性驗證介面

在開發中,針對客戶端提交的數據進行驗證或提供模型數據轉換格式成字典給客戶端。可以使用Marshmallow模組來進行。

下面我們來了解一下Marshmallow模組.

2.Marshmallow模組

1.Marshmallow介紹

官方文檔://marshmallow.readthedocs.io/en/latest/

Marshmallow,中文譯作:棉花糖。是一個輕量級的數據格式轉換的模組,也叫序列化和反序列化模組,常用於將複雜的orm模型對象與python原生數據類型之間相互轉換。marshmallow提供了豐富的api功能。如下:

  1. Serializing

    序列化[可以把數據對象轉化為可存儲或可傳輸的數據類型,例如:objects/object->list/dict,dict/list->string]

  2. Deserializing

    反序列化器[把可存儲或可傳輸的數據類型轉換成數據對象,例如:list/dict->objects/object,string->dict/list]

  3. Validation

    數據校驗,可以在反序列化階段,針對要轉換數據的內容進行類型驗證或自定義驗證。

Marshmallow本身是一個單獨的庫,基於我們當前項目使用框架是flask並且資料庫ORM框架使用SQLAlchemy,所以我們可以通過安裝flask-sqlalchemy和marshmallow-sqlalchemy集成到項目就可以了。

2.基本安裝和配置

1.模組安裝

pip install -U marshmallow-sqlalchemy
pip install -U flask-sqlalchemy
pip install -U flask-marshmallow

2.模組初始化

import os

from flask_marshmallow import Marshmallow
...
# 數據轉換器的對象創建
ma = Marshmallow()

def init_app(config_path):
    ...
    # 數據轉換器的初始化
    ma.init_app(app)

  

3.創建一個marsh藍圖模組

為了方便學習和使用Marshllow, 我們單獨創建一個藍圖來驗證這個模組的基本使用.

cd application/apps
python ../../manage.py blue -n marsh
    INSTALLED_APPS = [
        "application.apps.home",
        "application.apps.users",
        "application.apps.marsh",
    ]
from application.utils import include
urlpatterns = [
    include("","home.urls"),
    include("/users","users.urls"),
    include("/marsh","marsh.urls"),
]

3.MarshMallow基本構造器:Schema

marshmallow轉換數據格式主要通過構造器類來完成,而Schema類提供了數據轉換的基本功能:序列化,驗證和反序列化。所以在使用marshmallow的過程中所有的構造器類必須直接或間接繼承於Schema基類

1.基於Schema完成數據序列化轉換

1.序列化單個數據對象

application/apps/marsh/urls.py

from . import views
from application.utils import path
urlpatterns = [
    path("", views.index),
]

application/apps/marsh/views.py

from marshmallow import Schema,fields
from application.apps.users.models import User,UserProfile
class UserSchema(Schema):
    name   = fields.String()
    age    = fields.Integer()
    email  = fields.Email()
    money  = fields.Number()
    class Meta:
        fields = ["name","age","money","email","info"]
        ordered = True # 轉換成有序字典

def index():
    """序列化"""
    """單個模型數據的序列化處理"""
    user1 = User(name="xiaoming", password="123456", age=16, email="333@qq.com", money=31.50)
    
    data1 = UserSchema().dump(user1) # 將模型類對象序列化為字典dict格式
        
    data2 = UserSchema().dumps(user1) # 把模型對象轉換成json字元串格式
    return "ok"

2.序列化多個數據對象

在前面進行的序列化操作屬於序列化單個數據對象, MarshMallow中也可以進行多個數據對象的序列化.

application/apps/marsh/views.py

from marshmallow import Schema,fields
from application.apps.users.models import User,UserProfile

class UserSchema(Schema):
    name   = fields.String()
    age    = fields.Integer()
    email  = fields.Email()
    money  = fields.Number()
    class Meta:
        fields = ["name","age","money","email","info"]
        ordered = True # 轉換成有序字典

def index():
    """序列化"""
    """多個模型數據的序列化"""
    user1 = User(name="xiaoming", password="123456", age=15, email="333@qq.com", money=31.50)
    user2 = User(name="xiaohong", password="123456", age=16, email="333@qq.com", money=31.50)
    user3 = User(name="xiaopang", password="123456", age=17, email="333@qq.com", money=31.50)
    data_list = [user1,user2,user3]
    data1 = UserSchema(many=True).dumps(data_list) # 注意:序列化多個數據對象要加many=True
    return "ok"

3.構造器嵌套使用

application/apps/marsh/views.py

from marshmallow import Schema,fields
from application.apps.users.models import User,UserProfile
class UserProfileSchema(Schema):
    education = fields.Integer()
    middle_school = fields.String()

class UserSchema(Schema):
    name   = fields.String()
    age    = fields.Integer()
    email  = fields.Email()
    money  = fields.Number()
    
    # only的含義是外層序列化器要內層序列化器的哪些欄位
    info   = fields.Nested(UserProfileSchema,only=["middle_school"])
    class Meta:
        fields = ["name","age","money","email","info"]
        ordered = True # 轉換成有序字典

def index():
    """序列化"""
    """序列化嵌套使用"""
    user1 = User(name="xiaoming", password="123456", age=15, email="333@qq.com", money=31.50)
    user1.info = UserProfile(
        education=3,
        middle_school="北京師範學院附屬中學白沙路分校"
    )
    data = UserSchema().dump(user1)
    data = UserSchema().dumps(user1)
    print(data)
    return "ok"

2.基於Schema完成數據反序列化轉換

1.反序列化時設置欄位的默認值:missing

from marshmallow import Schema, fields, validate, ValidationError,post_load
class UserSchema2(Schema):
    name = fields.String()
    sex = fields.String()
    age = fields.Integer(missing=18) # 反序列化數據時,如果數據沒有給age欄位賦值,則age默認值為18
    email = fields.Email()
    mobile = fields.String()

    @post_load
    def post_load(self, data, **kwargs):
        return User(**data)

def index():
    user_data = {"mobile":"1331345635","name": "xiaoming", "email": "xiaoming@qq.com","sex":"abc"}
    us2 = UserSchema2()
    result = us2.load(user_data) # 將字典轉化為模型類對象
    print(type(result),result)  # <class 'application.apps.users.models.User'> <User: xiaoming>
    return "ok"

將user_data數據反序列化後再序列化,可以看到結果多了age:18這一項,這就是因為在schema中的age欄位中設置了missing=18

2.反序列化轉換/忽略部分數據:required/partial

from marshmallow import Schema, fields, validate, ValidationError,post_load
class UserSchema2(Schema):
    name = fields.String()
    sex = fields.String()
    age = fields.Integer(missing=18)
    email = fields.Email()
    
    # 設置反序列化時必須要有mobile欄位
    mobile = fields.String(required=True)

    @post_load
    def post_load(self, data, **kwargs):
        return User(**data)

def index():
    user_data = {"name": "xiaoming","sex":"abc"}
    us2 = UserSchema2()
    
    # 設置反序列化時可以忽略部分數據
    result = us2.load(user_data,partial=True)
    
    print(result)  # ==> <User xiaoming>
    return "ok"

3.設置欄位只在序列化或反序列化階段才啟用:load_only/dump_only

from marshmallow import Schema, fields, validate, ValidationError,post_load
class UserSchema2(Schema):
    name = fields.String()
    sex = fields.Integer()
    age = fields.Integer(missing=18)
    email = fields.Email()
    mobile = fields.String()
    password = fields.String(load_only=True) # 設置當前欄位為只寫欄位,只會在反序列化階段啟用

    @post_load
    def post_load(self, data, **kwargs):
        return User(**data)

def index():
    user_data = {"name": "xiaoming","password":"123456","sex":1}
    us2 = UserSchema2()
    # 反序列化
    result = us2.load(user_data)
    print(result)  # ==> <User xiaoming>
    # 序列化
    us3 = UserSchema2(only=["sex","name","age"]) # 限制處理的欄位,也就是序列化出來只有這三個欄位
    result2 = us3.dump(result)
    print(result2)
    return "ok"
'''
class UserSchema(Schema):
    name = fields.Str()
    # password is 
    password = fields.Str(load_only=True) # 相當於只寫欄位 "write-only"
    created_time = fields.DateTime(dump_only=True) # 相當於只讀欄位 "read-only"
'''

4.反序列化階段的鉤子方法

post_dump([fn,pass_many,pass_original]) 註冊序列化對象後調用的方法,它會在對象序列化後被調用。

post_load([fn,pass_many,pass_original]) 註冊反序列化對象後要調用的方法,它會在驗證數據之後被調用。

pre_dump([fn,pass_many]) 註冊序列化對象之前調用的方法,它會在序列化對象之前被調用。

pre_load([fn,pass_many]) 在反序列化對象之前,註冊要調用的方法,它會在驗證數據之前調用。

from marshmallow import Schema, fields, validate, ValidationError,post_load,post_dump
class UserSchema2(Schema):
    name = fields.String()
    sex = fields.Integer(validate=validate.OneOf([0,1,2]))
    age = fields.Integer(missing=18)
    email = fields.Email()
    mobile = fields.String()
    password = fields.String(load_only=True) # 設置當前欄位為只寫欄位,只會在反序列化階段啟用

    
    @post_load
    def post_load(self, data, **kwargs):
        return User(**data)

    @post_dump
    def post_dump(self,data, **kwargs):
        data["mobile"] = data["mobile"][:3] +"*****"+ data["mobile"][-3:]
        return data

def index():
    user_data = {"name": "xiaoming","password":"123456","sex":1,"mobile":"133123454656"}
    us2 = UserSchema2()
# 反序列化 result = us2.load(user_data) print(result) # ==> <User xiaoming>
# 序列化 us3 = UserSchema2(only=["sex","name","age","mobile"]) # 限制處理的欄位 result2 = us3.dump(result) print(result2) return "ok"

Tip:schema常用屬性數據類型

類型 描述
fields.Dict(keys, type]] = None, values, …) 字典類型,常用於接收json類型數據
fields.List(cls_or_instance, type], **kwargs) 列表類型,常用於接收數組數據
fields.Tuple(tuple_fields, *args, **kwargs) 元組類型
fields.String(*, default, missing, data_key, …) 字元串類型
fields.UUID(*, default, missing, data_key, …) UUID格式類型的字元串
fields.Number(*, as_string, **kwargs) 數值基本類型
fields.Integer(*, strict, **kwargs) 整型
fields.Decimal(places, rounding, *, allow_nan, …) 數值型
fields.Boolean(*, truthy, falsy, **kwargs) 布爾型
fields.Float(*, allow_nan, as_string, **kwargs) 浮點數類型
fields.DateTime(format, **kwargs) 日期時間類型
fields.Time(format, **kwargs) 時間類型
fields.Date(format, **kwargs) 日期類型
fields.Url(*, relative, schemes, Set[str]]] = None, …) url網址字元串類型
fields.Email(*args, **kwargs) 郵箱字元串類型
fields.IP(*args[, exploded]) IP地址字元串類型
fields.IPv4(*args[, exploded]) IPv4地址字元串類型
fields.IPv6(*args[, exploded]) IPv6地址字元串類型
fields.Method(serialize, deserialize, **kwargs) 基於Schema類方法返回值的欄位
fields.Function(serialize, Any], Callable[[Any, …) 基於函數返回值得欄位
fields.Nested(nested, type, str, Callable[[], …) 外鍵類型

 

Tip:schema數據類型的常用屬性

屬性名 描述
default 序列化階段中設置欄位的默認值
missing 反序列化階段中設置欄位的默認值
validate 反序列化階段調用的內置數據驗證器或者內置驗證集合
required 設置當前欄位的必填欄位
allow_none 是否允許為空
load_only 是否在反序列化階段才使用到當前欄位
dump_omly 是否在序列化階段才使用到當前欄位
error_messages 字典類型,可以用來替代默認的欄位異常提示語,格式:<br>error_messages={「required」: 「用戶名為必填項。」}

 

3.反序列化階段對數據進行校驗

1.基於內置器對數據進行校驗

內置驗證器 描述
validate.Email(*, error) 郵箱驗證
validate.Equal(comparable, *, error) 判斷值是否相等
validate.Length(min, max, *, equal, error) 值長度/大小驗證
validate.OneOf(choices, labels, *, error) 選項驗證
validate.Range([min, max]) 範圍驗證
validate.Regexp(regex, bytes, Pattern][, flags]) 正則驗證
validate.URL(*, relative, schemes, Set[str]]] = None, …) 驗證是否為URL

 

 

Tip:Schema常用屬性數據類型

 

 

 

 

 

 

 

from marshmallow import Schema, fields, validate, ValidationError,post_load
class UserSchema3(Schema):
    name = fields.String(required=True)
    sex = fields.String(required=True,error_messages={"required":"對不起,permission必須填寫"})
    age = fields.Integer(missing=18,validate=validate.Range(min=18,max=40,error="年齡必須在18-40之間!")) # 限制數值範圍
    email = fields.Email(error_messages={"invalid":"對不起,必須填寫郵箱格式!"})
    mobile = fields.String(required=True, validate=validate.Regexp("^1[3-9]\d{9}$",error="手機號碼格式不正確"),error_messages={"Regexp":"手機格式不正確"})

    @post_load
    def make_user_obj(self, data, **kwargs):
        return User(**data)

def index3():
    user_data = {"mobile":"1331345635","name": "xiaoming","age":40, "email": "xiaoming@qq.com","sex":"abc"}
    us2 = UserSchema3()
    result = us2.load(user_data)
    result2 = us2.dumps(result)
    print(result)
    print(result2)
    return "ok"

2.自定義驗證方法

局部鉤子和全局鉤子,比如局部鉤子對單個欄位(用戶名)的判斷,以及全局鉤子對密碼,確認密碼多個欄位的判斷

from marshmallow import Schema, fields, validate,validates, ValidationError,post_load,validates_schema

class UserSchema4(Schema):
    name = fields.String(required=True)
    sex = fields.String(required=True,error_messages={"required":"對不起,permission必須填寫"})
    age = fields.Integer(missing=18,validate=validate.Range(min=18,max=40,error="年齡必須在18-40之間!")) # 限制數值範圍
    email = fields.Email(error_messages={"invalid":"對不起,必須填寫郵箱格式!"})
    mobile = fields.String(required=True, validate=validate.Regexp("^1[3-9]\d{9}$",error="手機號碼格式不正確"),error_messages={"Regexp":"手機格式不正確"})
    password = fields.String(required=True, load_only=True)
    password2 = fields.String(required=True, allow_none=True)
    
    @post_load
    def make_user_obj(self, data, **kwargs):
        return User(**data)
    
    # 局部鉤子 ***
    @validates("name")
    def validate_name(self,data,**kwargs):
        print("name=%s" % data)
        if data == "root":
            raise ValidationError({"對不起,root用戶是超級用戶!您沒有許可權註冊!"})

        # 必須有返回值
        return data

    # 全局鉤子 ***
    @validates_schema
    def validate(self,data,**kwargs):
        print(data)
        if data["password"] != data["password2"]:
            raise ValidationError("密碼和確認密碼必須一樣!")

        data.pop("password2")
        return data

def index():
    user_data = {"password":"12345","password2":"123456","mobile":"13313345635","name": "root1","age":40, "email": "xiaoming@qq.com","sex":"abc"}
    us2 = UserSchema4()
    result = us2.load(user_data)
    print(result)
    return "ok"

 

類型
描述
fields.Dict(keys, type]] = None, values, …)
字典類型,常用於接收json類型數據
fields.List(cls_or_instance, type], **kwargs)
列表類型,常用於接收數組數據
fields.Tuple(tuple_fields, *args, **kwargs)
元組類型
fields.String(*, default, missing, data_key, …)
字元串類型
fields.UUID(*, default, missing, data_key, …)
UUID格式類型的字元串
fields.Number(*, as_string, **kwargs)
數值基本類型
fields.Integer(*, strict, **kwargs)
整型
fields.Decimal(places, rounding, *, allow_nan, …)
數值型
fields.Boolean(*, truthy, falsy, **kwargs)
布爾型
fields.Float(*, allow_nan, as_string, **kwargs)
浮點數類型
fields.DateTime(format, **kwargs)
日期時間類型
fields.Time(format, **kwargs)
時間類型
fields.Date(format, **kwargs)
日期類型
fields.Url(*, relative, schemes, Set[str]]] = None, …)
url網址字元串類型
fields.Email(*args, **kwargs)
郵箱字元串類型
fields.IP(*args[, exploded])
IP地址字元串類型
fields.IPv4(*args[, exploded])
IPv4地址字元串類型
fields.IPv6(*args[, exploded])
IPv6地址字元串類型
fields.Method(serialize, deserialize, **kwargs)
基於Schema類方法返回值的欄位
fields.Function(serialize, Any], Callable[[Any, …)
基於函數返回值得欄位
fields.Nested(nested, type, str, Callable[[], …)
外鍵類型