mybatis 源碼分析(四)一二級快取分析

  • 2019 年 10 月 3 日
  • 筆記

本篇部落格主要講了 mybatis 一二級快取的構成,以及一些容易出錯地方的示例分析;

一、mybatis 快取體系

mybatis 的一二級快取體系大致如下:

  • 首先當一二級快取同時開啟的時候,首先命中二級快取;
  • 一級快取位於 BaseExecutor 中不能關閉,但是可以指定範圍 STATEMENT、SESSION;
  • 整個二級快取雖然經過了很多事務相關的組件,但是最終是落地在 MapperStatement 的 Cache 中(Cache 的具體實例類型可以在 mapper xml 的 cache type 標籤中指定,默認 PerpetualCache),而 MapperStatement 和 namespace 一一對應,所以二級快取的作用域是 mapper namespace;
  • 在使用二級快取的時候,如果 cache 沒有命中則向後查找,然後查詢的結果不是直接放到 cache 中,而是首先放到 TransactionCache 的本地快取中,這裡區分 entriesToAddOnCommit、entriesMissedInCache 是為了統計命令率,最後在 sqlSession commit 的時候,才會將 TransactionCache 的本地快取提交到 cache 中,此時 cache 才是對其他 sqlSession 可見的;
  • 此外當需要分散式快取的時候,就需要將二級快取放到 JVM 之外,這裡可以實現 cache 介面編寫自己的 cache,此時在實現的 cache 中就可以使用 ehcache、redis 等外部快取進行操作;

以上就大致是 mybatis 快取的整體結構,下面將分模組拆分測試一二級快取;

二、一級快取

mybatis 的一級快取一般情況很少使用,其原因主要有兩個:

  • 一級快取的生命周期同 SqlSession,所以容易出現臟讀;
  • 一級快取的 cache 的實現只能是 PerpetualCache,所以不能指定容量等設置;

1. 臟讀測試

指定一級快取範圍為 SESSION:

<setting name="localCacheScope" value="SESSION"/>
@Test  public void test01() {    SqlSessionFactory sqlSessionFactory = DBUtils.getSessionFactory();    try (      SqlSession sqlSession1 = sqlSessionFactory.openSession(true);      SqlSession sqlSession2 = sqlSessionFactory.openSession(true);    ) {      UserMapper userMapper1 = sqlSession1.getMapper(UserMapper.class);      UserMapper userMapper2 = sqlSession2.getMapper(UserMapper.class);      log.info("---get: {}", userMapper1.getUser(1L));      log.info("---get: {}", userMapper2.getUser(1L));      log.info("---update: {}", userMapper1.setNameById(1L, "LiSi"));      log.info("---get: {}", userMapper1.getUser(1L));      log.info("---get: {}", userMapper2.getUser(1L));    }  }

結果如下:

[DEBUG] sanzao.db.UserMapper.getUser - ==>  Preparing: select * from user where id = ?  [DEBUG] sanzao.db.UserMapper.getUser - ==> Parameters: 1(Long)  [TRACE] sanzao.db.UserMapper.getUser - <==    Columns: id, username, password, address  [TRACE] sanzao.db.UserMapper.getUser - <==        Row: 1, ZhangSan, 123456, TT  [DEBUG] sanzao.db.UserMapper.getUser - <==      Total: 1  [INFO] sanzao.Test01 - ---get: User{id=1, user_name='ZhangSan', password='123456', address='TT'}  [DEBUG] org.apache.ibatis.transaction.jdbc.JdbcTransaction - Opening JDBC Connection  [DEBUG] org.apache.ibatis.datasource.pooled.PooledDataSource - Created connection 61073295.  [DEBUG] sanzao.db.UserMapper.getUser - ==>  Preparing: select * from user where id = ?  [DEBUG] sanzao.db.UserMapper.getUser - ==> Parameters: 1(Long)  [TRACE] sanzao.db.UserMapper.getUser - <==    Columns: id, username, password, address  [TRACE] sanzao.db.UserMapper.getUser - <==        Row: 1, ZhangSan, 123456, TT  [DEBUG] sanzao.db.UserMapper.getUser - <==      Total: 1  [INFO] sanzao.Test01 - ---get: User{id=1, user_name='ZhangSan', password='123456', address='TT'}  [DEBUG] sanzao.db.UserMapper.setNameById - ==>  Preparing: update user set username = ? where id = ?  [DEBUG] sanzao.db.UserMapper.setNameById - ==> Parameters: LiSi(String), 1(Long)  [DEBUG] sanzao.db.UserMapper.setNameById - <==    Updates: 1  [INFO] sanzao.Test01 - ---update: 1  [DEBUG] sanzao.db.UserMapper.getUser - ==> Parameters: 1(Long)  [TRACE] sanzao.db.UserMapper.getUser - <==    Columns: id, username, password, address  [TRACE] sanzao.db.UserMapper.getUser - <==        Row: 1, LiSi, 123456, TT  [DEBUG] sanzao.db.UserMapper.getUser - <==      Total: 1  [INFO] sanzao.Test01 - ---get: User{id=1, user_name='LiSi', password='123456', address='TT'}  [INFO] sanzao.Test01 - ---get: User{id=1, user_name='ZhangSan', password='123456', address='TT'}

可以看到當 sqlSession1 更新的時候,sqlSession2 的快取仍然有效所以出現了臟讀;所以通常都設置一級快取的範圍為:STATEMENT;

2. 源碼分析

mybatis 的一級快取主要和 Executor 整合比較多,所以建議先查看我上一篇部落格 Executor 詳解 ,詳細了解快取命中的整體流程;這裡一級快取的源碼也很簡單:

  • 查詢的時候,首先查快取,命中則返回,未命中就查資料庫,然後填充快取;
  • 更新、提交等操作情況快取;
@SuppressWarnings("unchecked")  @Override  public <E> List<E> query(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql) throws SQLException {    ErrorContext.instance().resource(ms.getResource()).activity("executing a query").object(ms.getId());    if (closed) { throw new ExecutorException("Executor was closed."); }      // 查詢的時候一般不清楚快取,但是可以通過 xml配置或者註解強制清除,queryStack == 0 是為了防止遞歸調用    if (queryStack == 0 && ms.isFlushCacheRequired()) { clearLocalCache(); }    List<E> list;    try {      queryStack++;      // 首先查看一級快取      list = resultHandler == null ? (List<E>) localCache.getObject(key) : null;      if (list != null) {        handleLocallyCachedOutputParameters(ms, key, parameter, boundSql);      } else {        // 沒有查到的時候直接到資料庫查找        list = queryFromDatabase(ms, parameter, rowBounds, resultHandler, key, boundSql);      }    } finally {      queryStack--;    }    if (queryStack == 0) {      // 延遲載入隊列      for (DeferredLoad deferredLoad : deferredLoads) {        deferredLoad.load();      }      deferredLoads.clear();      if (configuration.getLocalCacheScope() == LocalCacheScope.STATEMENT) {        // 一級快取本身不能關閉,但是可以設置作用範圍 STATEMENT,每次都清除快取        clearLocalCache();      }    }    return list;  }

三、二級快取

mybatis 二級快取要稍微複雜一點,中間多了一步事務快取:

  • 首先無論是查詢還是更新,都會按要求清空快取 flushCacheIfRequired,默認更新清空,查詢不清空,也可以在 xml 或者註解中指定;
  • 查詢的時候,先查快取,命中返回,未命中查一級快取、資料庫,然後回填事務快取,注意這裡不是直接填充到快取中;此時的事務快取對任何的 SqlSession 都是不可見的,因為自己查詢的時候也是直接查詢的目標快取;
  • 更新就直接委託給目標 Executor 執行;
  • 最後 SqlSession 執行commit 的時候,將事務快取刷新到目標快取中;

1. 事務快取測試

設置二級快取:

<setting name="cacheEnabled" value="true"/>    <mapper namespace="***">    <cache/>  </mapper>
@Test  public void test02() {    SqlSessionFactory sqlSessionFactory = DBUtils.getSessionFactory();    try (      SqlSession sqlSession1 = sqlSessionFactory.openSession(true);      SqlSession sqlSession2 = sqlSessionFactory.openSession(true);    ) {      UserMapper userMapper1 = sqlSession1.getMapper(UserMapper.class);      UserMapper userMapper2 = sqlSession2.getMapper(UserMapper.class);        User u1 = userMapper1.getUser(1L);      System.out.println("---get u1: " + u1);        User u2 = userMapper2.getUser(1L);      System.out.println("---get u2: " + u2);        User u3 = userMapper1.getUser(1L);      System.out.println("---get u3: " + u3);    }  }

列印:

DEBUG [main] - Cache Hit Ratio [sanzao.db.UserMapper]: 0.0  DEBUG [main] - ==>  Preparing: select * from user where id = ?  DEBUG [main] - ==> Parameters: 1(Long)  DEBUG [main] - <==      Total: 1  ---get u1: User{id=1, user_name='sanzao', password='123456', address='TT'}  DEBUG [main] - Cache Hit Ratio [sanzao.db.UserMapper]: 0.0  DEBUG [main] - Opening JDBC Connection  DEBUG [main] - Created connection 1613095350.  DEBUG [main] - ==>  Preparing: select * from user where id = ?  DEBUG [main] - ==> Parameters: 1(Long)  DEBUG [main] - <==      Total: 1  ---get u2: User{id=1, user_name='sanzao', password='123456', address='TT'}  DEBUG [main] - Cache Hit Ratio [sanzao.db.UserMapper]: 0.0  ---get u3: User{id=1, user_name='sanzao', password='123456', address='TT'}

可以看到:

  • SqlSession1 為提交事務快取,所以 SqlSession2 又從資料庫中查了一次;
  • 當SqlSession1 再次查詢的時候,二級快取未命中 Cache Hit Ratio 為 0,但是命中了一級快取,所以並未再查資料庫;

2. 二級快取測試

這次我們提交快取看看是否命中:

@Test  public void test03() {    SqlSessionFactory sqlSessionFactory = DBUtils.getSessionFactory();    try (      SqlSession sqlSession1 = sqlSessionFactory.openSession(true);      SqlSession sqlSession2 = sqlSessionFactory.openSession(true);    ) {      UserMapper userMapper1 = sqlSession1.getMapper(UserMapper.class);      UserMapper userMapper2 = sqlSession2.getMapper(UserMapper.class);        User u1 = userMapper1.getUser(1L);      System.out.println("---get u1: " + u1);      sqlSession1.commit();        User u2 = userMapper2.getUser(1L);      System.out.println("---get u2: " + u2);        int i = userMapper1.setNameById(1L, "LiSi");      System.out.println("---update user: " + i);      sqlSession1.commit();        User u3 = userMapper1.getUser(1L);      System.out.println("---get u3: " + u3);      sqlSession1.commit();        User u4 = userMapper2.getUser(1L);      System.out.println("---get u4: " + u4);    }  }

列印:

DEBUG [main] - Cache Hit Ratio [sanzao.db.UserMapper]: 0.0  DEBUG [main] - ==>  Preparing: select * from user where id = ?  DEBUG [main] - ==> Parameters: 1(Long)  DEBUG [main] - <==      Total: 1  ---get u1: User{id=1, user_name='sanzao', password='123456', address='TT'}  DEBUG [main] - Cache Hit Ratio [sanzao.db.UserMapper]: 0.5  ---get u2: User{id=1, user_name='sanzao', password='123456', address='TT'}  DEBUG [main] - ==>  Preparing: update user set username = ? where id = ?  DEBUG [main] - ==> Parameters: LiSi(String), 1(Long)  DEBUG [main] - <==    Updates: 1  ---update user: 1  DEBUG [main] - Cache Hit Ratio [sanzao.db.UserMapper]: 0.3333333333333333  DEBUG [main] - ==>  Preparing: select * from user where id = ?  DEBUG [main] - ==> Parameters: 1(Long)  DEBUG [main] - <==      Total: 1  ---get u3: User{id=1, user_name='LiSi', password='123456', address='TT'}  DEBUG [main] - Cache Hit Ratio [sanzao.db.UserMapper]: 0.5  ---get u4: User{id=1, user_name='LiSi', password='123456', address='TT'}

這次就能看到當 SqlSession1 提交事務快取後,SqlSession2 就能看到了;

3. 快取配置測試

此外還可以配置各種二級快取策略,比如大小,刷新間隔時間,淘汰策略等,這裡主要就是使用了 Cache 介面的裝飾者模式:

  • LRU – 最近最少使用:移除最長時間不被使用的對象。
  • FIFO – 先進先出:按對象進入快取的順序來移除它們。
  • SOFT – 軟引用:基於垃圾回收器狀態和軟引用規則移除對象。
  • WEAK – 弱引用:更積極地基於垃圾收集器狀態和弱引用規則移除對象。

但是需要注意的是這裡的策略也能用戶本地快取,對於分散式快取有些策略還是有問題;比如:

<cache eviction="FIFO" flushInterval="60000" size="2" readOnly="true"/>

這裡主要定義了快取大小2,使用 FIFO 策略更新;

@Test  public void test04() {    SqlSessionFactory sqlSessionFactory = DBUtils.getSessionFactory();    try (      SqlSession sqlSession1 = sqlSessionFactory.openSession(true);      SqlSession sqlSession2 = sqlSessionFactory.openSession(true);) {      UserMapper userMapper1 = sqlSession1.getMapper(UserMapper.class);      UserMapper userMapper2 = sqlSession2.getMapper(UserMapper.class);        System.out.println("---get user: " + userMapper1.getUser(1L));      sqlSession1.commit();        System.out.println("---get user: " + userMapper1.getUser(2L));      sqlSession1.commit();        System.out.println("---get user: " + userMapper1.getUser(3L));      sqlSession1.commit();        System.out.println("---get user: " + userMapper2.getUser(1L));        System.out.println("---get user: " + userMapper2.getUser(2L));        System.out.println("---get user: " + userMapper1.getUser(1L));      sqlSession2.commit();        System.out.println("------------");      System.out.println("---get user: " + userMapper1.getUser(1L));      System.out.println("---get user: " + userMapper1.getUser(2L));      System.out.println("---get user: " + userMapper1.getUser(3L));    }  }

列印:

DEBUG [main] - Cache Hit Ratio [sanzao.db.UserMapper]: 0.0  DEBUG [main] - ==>  Preparing: select * from user where id = ?  DEBUG [main] - ==> Parameters: 1(Long)  DEBUG [main] - <==      Total: 1  ---get user: User{id=1, user_name='s1', password='123456', address='TT'}  DEBUG [main] - Cache Hit Ratio [sanzao.db.UserMapper]: 0.0  DEBUG [main] - ==>  Preparing: select * from user where id = ?  DEBUG [main] - ==> Parameters: 2(Long)  DEBUG [main] - <==      Total: 1  ---get user: User{id=2, user_name='s2', password='123456', address='TT'}  DEBUG [main] - Cache Hit Ratio [sanzao.db.UserMapper]: 0.0  DEBUG [main] - ==>  Preparing: select * from user where id = ?  DEBUG [main] - ==> Parameters: 3(Long)  DEBUG [main] - <==      Total: 1  ---get user: User{id=3, user_name='s3', password='123456', address='TT'}  DEBUG [main] - Cache Hit Ratio [sanzao.db.UserMapper]: 0.0  DEBUG [main] - ==>  Preparing: select * from user where id = ?  DEBUG [main] - ==> Parameters: 1(Long)  DEBUG [main] - <==      Total: 1  ---get user: User{id=1, user_name='s1', password='123456', address='TT'}  DEBUG [main] - Cache Hit Ratio [sanzao.db.UserMapper]: 0.2  ---get user: User{id=2, user_name='s2', password='123456', address='TT'}  DEBUG [main] - Cache Hit Ratio [sanzao.db.UserMapper]: 0.16666666666666666  DEBUG [main] - ==>  Preparing: select * from user where id = ?  DEBUG [main] - ==> Parameters: 1(Long)  DEBUG [main] - <==      Total: 1  ---get user: User{id=1, user_name='s1', password='123456', address='TT'}  ------------  DEBUG [main] - Cache Hit Ratio [sanzao.db.UserMapper]: 0.2857142857142857  ---get user: User{id=1, user_name='s1', password='123456', address='TT'}  DEBUG [main] - Cache Hit Ratio [sanzao.db.UserMapper]: 0.25  DEBUG [main] - ==> Parameters: 2(Long)  DEBUG [main] - <==      Total: 1  ---get user: User{id=2, user_name='s2', password='123456', address='TT'}  DEBUG [main] - Cache Hit Ratio [sanzao.db.UserMapper]: 0.3333333333333333  ---get user: User{id=3, user_name='s3', password='123456', address='TT'}

從日誌中可以看到對於 SqlSession1,大小2,FIFO 是生效的,但是 SqlSession2 提交了之後,就發現快取 s1,s2,s3 都命中了;

至於源碼太多了就不一次分析了,對於上面說的使用裝飾者模式,可以在 CacheBuilder 中看到;

public Cache build() {    setDefaultImplementations();    Cache cache = newBaseCacheInstance(implementation, id);    setCacheProperties(cache);    // issue #352, do not apply decorators to custom caches    if (PerpetualCache.class.equals(cache.getClass())) {      for (Class<? extends Cache> decorator : decorators) {        cache = newCacheDecoratorInstance(decorator, cache);        setCacheProperties(cache);      }      cache = setStandardDecorators(cache);    } else if (!LoggingCache.class.isAssignableFrom(cache.getClass())) {      cache = new LoggingCache(cache);    }    return cache;  }

總結

  • mybatis 一級快取的生命周期和 SqlSession 是一樣的,通常情況下不建議使用一級快取,通常將一級快取範圍設置為 STATEMENT;
  • 使用 mybatis 二級的時候,務必記得 SqlSession.commit ,否則二級快取是不生效的;
  • 在配置 mybatis 分散式二級快取的時候,要確保快取淘汰等策略是可以用於分散式快取的;