pytorch 影像分類數據集(Fashion-MNIST)
- 2020 年 11 月 1 日
- 筆記
- python學習筆記
import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import time
import sys
sys.path.append("..") #導入d2lzh_pytorch
import d2lzh_pytorch as d2l #導入所需要的包和模組
mnist_train =torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST',train=True, download=True, transform=transforms.ToTensor())
#用torchvision的torchvision.datasets來下載數據集 通過參數train來指定訓練數據集或測試數據集
#用transform=transform.ToTensor()將所有數據轉換為Tensor (不進行轉換 換回的為PIL圖片)
mnist_test =torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST',train=False, download=True, transform=transforms.ToTensor())
print(type(mnist_train))
print(len(mnist_train), len(mnist_test)) #獲取數據集的大小
輸出結果:
<class 'torchvision.datasets.mnist.FashionMNIST'>
60000 10000
feature, label = mnist_train[0] #通過下標來訪問任意一個樣本
print(feature.shape, label) # Channel x Height X Width
輸出結果:torch.Size([1, 28, 28]) 9
#1 28 28 C*H*W 第一維通道數 數據集為灰度影像 所以通道數為1 後面為高和寬
def get_fashion_mnist_labels(labels):
text_labels = ['t-shirt', 'trouser', 'pullover', 'dress','coat','sandal', 'shirt', 'sneaker', 'bag', 'ankleboot']
return [text_labels[int(i)] for i in labels]
#將數值標籤轉換為相應的文本標籤
#定義可以在一行里畫出多張影像和對應標籤
def show_fashion_mnist(images, labels):
#d2l.use_svg_display()
_, figs = plt.subplots(1, len(images), figsize=(12, 12))
for f, img, lbl in zip(figs, images, labels):
f.imshow(img.view((28, 28)).numpy())
f.set_title(lbl)
f.axes.get_xaxis().set_visible(False)
f.axes.get_yaxis().set_visible(False)
plt.show()
X, y = [], []
for i in range(5):
X.append(mnist_train[i][0])
y.append(mnist_train[i][1])
show_fashion_mnist(X, get_fashion_mnist_labels(y))
batch_size = 256
if sys.platform.startswith('win'):
num_workers = 0 #0表示不用額外的進程來加速讀取數據
else:
num_workers = 4 #設置4個進程讀取數據
train_iter = torch.utils.data.DataLoader(mnist_train,batch_size=batch_size, shuffle=True, num_workers=num_workers)
test_iter = torch.utils.data.DataLoader(mnist_test,batch_size=batch_size, shuffle=False, num_workers=num_workers)
#PyTorch的DataLoader中⼀個很⽅便的功能是允許使⽤多進程來加速數據讀取
start = time.time()
for X, y in train_iter:
continue
print('%.2f sec' % (time.time() - start)) #查看讀取⼀遍訓練數據需要的時間
輸出結果:4.99 sec (不是一個確定值)