MySQL 用 limit 為什麼會影響性能?

  • 2019 年 11 月 12 日
  • 筆記

一,前言

首先說明一下MySQL的版本:

mysql> select version();  +-----------+  | version() |  +-----------+  | 5.7.17    |  +-----------+  1 row in set (0.00 sec)

表結構:

mysql> desc test;  +--------+---------------------+------+-----+---------+----------------+  | Field  | Type                | Null | Key | Default | Extra          |  +--------+---------------------+------+-----+---------+----------------+  | id     | bigint(20) unsigned | NO   | PRI | NULL    | auto_increment |  | val    | int(10) unsigned    | NO   | MUL | 0       |                |  | source | int(10) unsigned    | NO   |     | 0       |                |  +--------+---------------------+------+-----+---------+----------------+  3 rows in set (0.00 sec)

id為自增主鍵,val為非唯一索引。

灌入大量數據,共500萬:

mysql> select count(*) from test;  +----------+  | count(*) |  +----------+  |  5242882 |  +----------+  1 row in set (4.25 sec)

我們知道,當limit offset rows中的offset很大時,會出現效率問題:

mysql> select * from test where val=4 limit 300000,5;  +---------+-----+--------+  | id      | val | source |  +---------+-----+--------+  | 3327622 |   4 |      4 |  | 3327632 |   4 |      4 |  | 3327642 |   4 |      4 |  | 3327652 |   4 |      4 |  | 3327662 |   4 |      4 |  +---------+-----+--------+  5 rows in set (15.98 sec)

為了達到相同的目的,我們一般會改寫成如下語句:

mysql> select * from test a inner join (select id from test where val=4 limit 300000,5) b on a.id=b.id;  +---------+-----+--------+---------+  | id      | val | source | id      |  +---------+-----+--------+---------+  | 3327622 |   4 |      4 | 3327622 |  | 3327632 |   4 |      4 | 3327632 |  | 3327642 |   4 |      4 | 3327642 |  | 3327652 |   4 |      4 | 3327652 |  | 3327662 |   4 |      4 | 3327662 |  +---------+-----+--------+---------+  5 rows in set (0.38 sec)

時間相差很明顯。

為什麼會出現上面的結果?我們看一下select * from test where val=4 limit 300000,5;的查詢過程:

查詢到索引葉子節點數據。 根據葉子節點上的主鍵值去聚簇索引上查詢需要的全部欄位值。

類似於下面這張圖:

像上面這樣,需要查詢300005次索引節點,查詢300005次聚簇索引的數據,最後再將結果過濾掉前300000條,取出最後5條。MySQL耗費了大量隨機I/O在查詢聚簇索引的數據上,而有300000次隨機I/O查詢到的數據是不會出現在結果集當中的。推薦:MySQL 索引B+樹原理,以及建索引的幾大原則

肯定會有人問:既然一開始是利用索引的,為什麼不先沿著索引葉子節點查詢到最後需要的5個節點,然後再去聚簇索引中查詢實際數據。這樣只需要5次隨機I/O,類似於下面圖片的過程:

其實我也想問這個問題。

證實

下面我們實際操作一下來證實上述的推論:

為了證實select * from test where val=4 limit 300000,5是掃描300005個索引節點和300005個聚簇索引上的數據節點,我們需要知道MySQL有沒有辦法統計在一個sql中通過索引節點查詢數據節點的次數。我先試了Handler_read_*系列,很遺憾沒有一個變數能滿足條件。

我只能通過間接的方式來證實:

InnoDB中有buffer pool。裡面存有最近訪問過的數據頁,包括數據頁和索引頁。所以我們需要運行兩個sql,來比較buffer pool中的數據頁的數量。預測結果是運行select * from test a inner join (select id from test where val=4 limit 300000,5) b>之後,buffer pool中的數據頁的數量遠遠少於select * from test where val=4 limit 300000,5;對應的數量,因為前一個sql只訪問5次數據頁,而後一個sql訪問300005次數據頁。

select * from test where val=4 limit 300000,5

mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary') and TABLE_NAME like '%test%' group by index_name;  Empty set (0.04 sec)

可以看出,目前buffer pool中沒有關於test表的數據頁。

mysql> select * from test where val=4 limit 300000,5;  +---------+-----+--------+  | id      | val | source |  +---------+-----+--------+  | 3327622 |   4 |      4 |  | 3327632 |   4 |      4 |  | 3327642 |   4 |      4 |  | 3327652 |   4 |      4 |  | 3327662 |   4 |      4 |  +---------+-----+--------+  5 rows in set (26.19 sec)    mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary') and TABLE_NAME like '%test%' group by index_name;  +------------+----------+  | index_name | count(*) |  +------------+----------+  | PRIMARY    |     4098 |  | val        |      208 |  +------------+----------+  2 rows in set (0.04 sec)

可以看出,此時buffer pool中關於test表有4098個數據頁,208個索引頁。

select * from test a inner join (select id from test where val=4 limit 300000,5) b>為了防止上次試驗的影響,我們需要清空buffer pool,重啟mysql。mysqladmin shutdown /usr/local/bin/mysqld_safe & mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary') and TABLE_NAME like '%test%' group by index_name; Empty set (0.03 sec) 運行sql: mysql> select * from test a inner join (select id from test where val=4 limit 300000,5) b on a.id=b.id; +---------+-----+--------+---------+ | id | val | source | id | +---------+-----+--------+---------+ | 3327622 | 4 | 4 | 3327622 | | 3327632 | 4 | 4 | 3327632 | | 3327642 | 4 | 4 | 3327642 | | 3327652 | 4 | 4 | 3327652 | | 3327662 | 4 | 4 | 3327662 | +---------+-----+--------+---------+ 5 rows in set (0.09 sec) mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary') and TABLE_NAME like '%test%' group by index_name; +------------+----------+ | index_name | count(*) | +------------+----------+ | PRIMARY | 5 | | val | 390 | +------------+----------+ 2 rows in set (0.03 sec)我們可以看明顯的看出兩者的差別:第一個sql載入了4098個數據頁到buffer pool,而第二個sql只載入了5個數據頁到buffer pool。符合我們的預測。也證實了為什麼第一個sql會慢:讀取大量的無用數據行(300000),最後卻拋棄掉。 而且這會造成一個問題:載入了很多熱點不是很高的數據頁到buffer pool,會造成buffer pool的污染,佔用buffer pool的空間。 遇到的問題

為了在每次重啟時確保清空buffer pool,我們需要關閉innodb_buffer_pool_dump_at_shutdown和innodb_buffer_pool_load_at_startup,這兩個選項能夠控制資料庫關閉時dump出buffer pool中的數據和在資料庫開啟時載入在磁碟上備份buffer pool的數據。 參考資料: 1.https://explainextended.com/2009/10/23/mysql-order-by-limit-performance-late-row-lookups/ 2.https://dev.mysql.com/doc/refman/5.7/en/innodb-information-schema-buffer-pool-tables.html

作者:zhangyachen 來源:https://dwz.cn/K1Q1cePW

– END –