通過Maxwell解析MySQL Binlog,打好業務多活的基礎

  • 2019 年 11 月 11 日
  • 筆記

這是學習筆記的第 2153 篇文章

在Binlog解析方向和數據流轉方向上,經常會提到比較有名的幾類工具,阿里的Canal,Zendesk的Maxwell和Yelp的mysql_streamer,他們整體的情況如下:

主要設計思想是偽裝MySQL Slave,通過與MySQL服務端協議通訊,建立複製執行緒,從而獲得主庫推送的實時數據變化。

在功能完善性和生態建設上,Canal和Zendesk整體的表現要好一些,它們都是基於Java開發,支援多種模式的數據上下游集成,如果是想快速上手,Maxwell是一個不錯的選擇,而mysql_streamer的維護時間在2017年左右,在行業里看到的案例相對要少。

Maxwell相對比較精巧,它能實時讀取MySQL二進位日誌binlog,並生成 JSON 格式的消息,這一點是我優先考慮Maxwell的首要原因,當然它也可以作為生產者發送給 Kafka,Kinesis、RabbitMQ、Redis、Google Cloud Pub/Sub、文件或其它平台的應用程式。如果說使用場景,它的常見應用場景有ETL、維護快取、收集表級別的DML指標、增量到搜索引擎、數據分區遷移等。

bin/maxwell –user='maxwell' –password='XXXXXX' –port=33071 –host=127.0.0.1 –gtid_mode=true –output_server_id=true –output_thread_id=true –output_schema_id=true –output_primary_keys=true –output_primary_key_columns=true –output_binlog_position=true –output_gtid_position=true –output_null_zerodates=true –output_ddl=true –producer=stdout

開啟了全量的指標,通過全量的指標來權衡各種語句中必須的選項和解析邏輯.

我們先按照兩個大的維度來梳理和總結。

  • DML語句梳理
  • 事務語句梳理

.DML語句調研梳理

主要覆蓋Insert,Update,Delete,對返回的JSON數據進行梳理分析。

1) Insert語句

JSON返回數據

{  "database": "test",  "table": "test_data",  "type": "insert",  "ts": 1573024626,  "xid": 49482,  "commit": true,  "position": "binlog.000009:2466059",  "gtid": "f73d7025-f25b-11e9-9824-52540058c70f:10310",  "server_id": 33091,  "thread_id": 147,  "schema_id": 5,  "primary_key": [3],  "primary_key_columns": ["id"],  "data": {  "id": 3,  "name": "cc"  }  }

語句解析設計

可以直接解析data中的數據,拼裝為insert語句

欄位列表需要根據data中的第1行數據進行拼裝

需要解析的屬性:

{  "database": "test",  "table": "test_data",  "type": "insert",  "ts": 1573024626,  "xid": 49482,  "commit": true,  "position": "binlog.000009:2466059",  "gtid": "f73d7025-f25b-11e9-9824-52540058c70f:10310",  "server_id": 33091,  "data": {  "id": 3,  "name": "cc"  }  }

冪等偽SQL

Insert into [table]([id],[name]) values(?,?);

2) delete語句

JSON返回數據

{  "database": "test",  "table": "test_data",  "type": "delete",  "ts": 1573014236,  "xid": 39918,  "commit": true,  "position": "binlog.000009:1948897",  "gtid": "f73d7025-f25b-11e9-9824-52540058c70f:8856",  "server_id": 33091,  "thread_id": 122,  "schema_id": 5,  "primary_key": [3],  "primary_key_columns": ["id"],  "data": {  "id": 3,  "name": "fff"  }  }

語句解析設計

{  "database": "test",  "table": "test_data",  "type": "delete",  "ts": 1573014236,  "xid": 39918,  "commit": true,  "position": "binlog.000009:1948897",  "gtid": "f73d7025-f25b-11e9-9824-52540058c70f:8856",  "primary_key": [3],  "primary_key_columns": ["id"],  "data": {  "id": 3,  "name": "fff"  }  }

如果刪除多行,假設SQL語句如下,刪除兩行數據:

delete from test_data where id>2;

Query OK, 2 rows affected (0.06 sec)

返回的JSON為:

{  "database": "test",  "table": "test_data",  "type": "delete",  "ts": 1573028638,  "xid": 54808,  "xoffset": 0,  "position": "binlog.000009:2754895",  "gtid": "f73d7025-f25b-11e9-9824-52540058c70f:11120",  "primary_key": [3],  "primary_key_columns": ["id"],  }  {  "database": "test",  "table": "test_data",  "type": "delete",  "ts": 1573028638,  "xid": 54808,  "commit": true,  "position": "binlog.000009:2754895",  "gtid": "f73d7025-f25b-11e9-9824-52540058c70f:11120",  "primary_key": [4],  "primary_key_columns": ["id"],  }

通過以上的分析和測試,可以看出delete操作可以關注於primary_key和primary_key_columns,得到相關的SQL語句,實現邏輯冪等性,

冪等偽SQL

Delete from [table] where [id]=?

3) update語句

JSON返回數據

{  "database": "test",  "table": "test_data",  "type": "update",  "ts": 1573024676,  "xid": 49552,  "commit": true,  "position": "binlog.000009:2470294",  "gtid": "f73d7025-f25b-11e9-9824-52540058c70f:10322",  "server_id": 33091,  "thread_id": 147,  "schema_id": 5,  "primary_key": [3],  "primary_key_columns": ["id"],  "data": {  "id": 3,  "name": "ccc"  },  "old": {  "name": "cc"  }  }

語句解析設計

{  "database": "test",  "table": "test_data",  "type": "update",  "ts": 1573024676,  "xid": 49552,  "commit": true,  "position": "binlog.000009:2470294",  "gtid": "f73d7025-f25b-11e9-9824-52540058c70f:10322",  "primary_key": [3],  "primary_key_columns": ["id"],  "data": {  "id": 3, --去除主鍵列  "name": "ccc"  },  "old": {  "name": "cc"  }  }

需要儘可能得到完整的Update語句。

冪等偽SQL

Update [table] set [name]=? Where [id]=? and [name]=?

4) 複雜SQL語句

表關聯修改場景1:

mysql> update test_data set name='bb' where id in (select id from test_data2);

Query OK, 1 row affected (0.01 sec)

Rows matched: 1 Changed: 1 Warnings: 0

會轉換為冪等的update語句。

{"database":"test","table":"test_data","type":"update","ts":1573096677,"xid":64394,"commit":true,"position":"binlog.000009:3276416","gtid":"f73d7025-f25b-11e9-9824-52540058c70f:12583","server_id":33091,"thread_id":170,"schema_id":6,"primary_key":[1],"primary_key_columns":["id"],"data":{"id":1,"name":"bb"},"old":{"name":"aa"}}

表關聯修改場景2:

mysql> update test_data,test_data2 set test_data.name='cc' where test_data.id=test_data2.id and test_data2.name='aa';

Query OK, 1 row affected (0.01 sec)

Rows matched: 1 Changed: 1 Warnings: 0

{"database":"test","table":"test_data","type":"update","ts":1573097195,"xid":65078,"commit":true,"position":"binlog.000009:3314180","gtid":"f73d7025-f25b-11e9-9824-52540058c70f:12689","server_id":33091,"thread_id":170,"schema_id":6,"primary_key":[1],"primary_key_columns":["id"],"data":{"id":1,"name":"cc"},"old":{"name":"bb"}}

5) DML語句冪等小結

整體是基於行模式的解析,可以邏輯冪等的設計原則來進行完善。

語句類型

冪等SQL

insert

Insert into [table]([id],[name]) values(?,?);

delete

Delete from [table] where [id]=?

update

Update [table] set [name]=? Where [id]=? and [name]=?

通過以上的小結,其實我們可以明確對於分散式ID的強烈需求,這會是我們構築業務多活的基礎實現。

二。事務調研和梳理

1) SQL操作分析

mysql> begin;

Query OK, 0 rows affected (0.00 sec)

mysql> update test_data set name='cc' where id=3;

Query OK, 1 row affected (0.00 sec)

Rows matched: 1 Changed: 1 Warnings: 0

mysql> insert into test_data values(4,'dd');

Query OK, 1 row affected (0.00 sec)

mysql> delete from test_data where id=2 and name='bb';

Query OK, 1 row affected (0.00 sec)

mysql> commit;

Query OK, 0 rows affected (0.01 sec)

2) JSON返回數據

{  "database": "test",  "table": "test_data",  "type": "update",  "ts": 1573024725,  "xid": 49621,  "xoffset": 0,  "position": "binlog.000009:2476678",  "gtid": "f73d7025-f25b-11e9-9824-52540058c70f:10340",  "server_id": 33091,  "thread_id": 147,  "schema_id": 5,  "primary_key": [3],  "primary_key_columns": ["id"],  "data": {  "id": 3,  "name": "cc"  },  "old": {  "name": "ccc"  }  }  {  "database": "test",  "table": "test_data",  "type": "insert",  "ts": 1573024735,  "xid": 49621,  "xoffset": 1,  "position": "binlog.000009:2476778",  "gtid": "f73d7025-f25b-11e9-9824-52540058c70f:10340",  "server_id": 33091,  "thread_id": 147,  "schema_id": 5,  "primary_key": [4],  "primary_key_columns": ["id"],  "data": {  "id": 4,  "name": "dd"  }  }  {  "database": "test",  "table": "test_data",  "type": "delete",  "ts": 1573024754,  "xid": 49621,  "commit": true,  "position": "binlog.000009:2476868",  "gtid": "f73d7025-f25b-11e9-9824-52540058c70f:10340",  "server_id": 33091,  "thread_id": 147,  "schema_id": 5,  "primary_key": [2],  "primary_key_columns": ["id"],  "data": {  "id": 2,  "name": "bb"  }  }

3) 語句邏輯解析設計

按照xoffset來遞增,下標為0,最後一個事務沒有xoffset,commit為true

對於insert,delete,update的解析邏輯可以復用DML處理的部分

SQL語句/命令

type

xid

timestamp

xid

xoffset

commit

begin;

update test_data set name='cc' where id=3;

update

49621

1573024725

147

0

insert into test_data values(4,'dd');

insert

49621

1573024735

147

1

delete from test_data where id=2 and name='bb';

delete

49621

1573024754

147

true

commit;

4) 大事務binlog

如果瞬間產生了大量的binlog,為了控制記憶體使用,會將處理延遲的binlog下沉到文件系統。

xxxxx INFO BinlogConnectorLifecycleListener – Binlog connected.

xxxxx INFO ListWithDiskBuffer – Overflowed in-memory buffer, spilling over into /tmp/maxwell7935334910787514257events

後續補充Maxwell解析DDL和設計中的一些潛在問題和補救措施。