ZooKeeper實現讀寫鎖

  • 2019 年 10 月 3 日
  • 筆記

在上一篇文章,我們已經實現了分散式鎖。今天更進一步,在分散式鎖的基礎之上,實現讀寫鎖。

完整程式碼在 https://github.com/SeemSilly/codestory/tree/master/research-zoo-keeper

1 讀寫鎖的概念

參考維基百科的條目: https://zh.wikipedia.org/wiki/讀寫鎖

讀寫鎖是電腦程式的並發控制的一種同步機制,用於解決讀寫問題,讀操作可並發重入,寫操作是互斥的。 讀寫鎖有多種讀寫許可權的優先順序策略,可以設計為讀優先、寫優先或不指定優先順序。

  • 讀優先:允許最大並發的讀操作,但可能會餓死寫操作;因為寫操作必須在沒有任何讀操作的時候才能夠執行。
  • 寫優先:只要排隊隊列中有寫操作,讀操作就必須等待;
  • 不指定優先順序:對讀操作和寫操作不做任何優先順序的假設

不指定優先順序的策略,最適合使用ZooKeeper的子節點模式來實現,今天就來嘗試這種策略。

2 鎖設計

同前面介紹的普通分散式鎖,也使用子節點模式實現。先用容器模式(CreateMode.CONTAINER)創建唯一的鎖節點,每個鎖客戶端在鎖節點下使用臨時循序模式(CreateMode. SEQUENTIAL)創建子節點。這些子節點會自動在名稱後面追加10位數字。

2.1 如何標識讀鎖還是寫鎖?

有兩種簡單的方案:在子節點名中標識、在節點的值中標識。如果採用在值中標識,每次子節點列表後,還需要再分別讀一下子節點的值,才能判斷是讀鎖還是寫鎖,會比較耗時。如果在子節點名稱中標識,會面臨一個問題:在同一個節點中創建的子節點,如果給定的名稱不同,追加的10位數字是否仍然是遞歸的?

寫個測試用例驗證一下。

public class SequentialTest extends TestBase {    @Test    public void testSequential() throws Exception {      String rootNodeName = "/container-" + System.currentTimeMillis();      ZooKeeperBase zooKeeper = new ZooKeeperBase(address);      zooKeeper.createRootNode(rootNodeName, CreateMode.CONTAINER);        Random random = new SecureRandom();      long lastNumber = -1L;      String[] prefixs = new String[] {"/a", "/b", "/c", "/d", "/e", "/f", "/g"};      for (int i = 0; i < 10; i++) {        int index = random.nextInt(prefixs.length);        String childNodeName = rootNodeName + prefixs[index];        String fullNodeName = zooKeeper.getZooKeeper().create(childNodeName, new byte[0],            ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);        long number = Long.parseLong(fullNodeName.substring(childNodeName.length()));        assert number == lastNumber + 1;        lastNumber = number;      }    }  }  

  

測試用例通過,說明在同一個Container中創建的子節點,不論提供的節點名是什麼,後續追加的10位數字都是順序遞增的。這樣,就可以使用節點名來區分讀鎖和寫鎖。

2.2   類設計

介紹分散式鎖的時候,已經創建了阻塞鎖 ChildrenBlockingLock,讀寫鎖正好可以基於這個類做重載。

 

 

2.3   獲取鎖的邏輯

寫鎖是一個獨佔鎖,邏輯跟普通分散式鎖相同,只要它之前有鎖就必須等待。所以,完全沿用阻塞鎖的邏輯即可。

讀鎖允許並發,它之前可以有任意讀鎖,但不能有寫鎖。所以只需要判斷有沒有寫鎖即可。

3      關鍵程式碼

3.1   ChildrenNodeLock.java

這個類,主要是增加了一個獲取排序後子節點列表的方法,這樣方便實現讀寫鎖的程式碼。當然,這個操作會增加一些耗時,如果子節點數量太大,可能不適用。

首先定義一個函數,用來返回子節點的前綴

/** 子節點的前綴,預設是element,子類可以重載 */  protected String getChildPrefix() {    return "element";  }

 

然後定義一個內部類,子節點排序時會用到

/** 子節點名稱比較 */  private class StringCompare implements Comparator<String> {    @Override    public int compare(String string1, String string2) {      return string1.substring(string1.length() - 10)          .compareTo(string2.substring(string2.length() - 10));    }  }

 

最後實現子節點排序方法,用於代替 getChildren 函數

/** 獲取排好序的子節點列表 */  final public List<String> getOrderedChildren(String path, boolean watch)      throws KeeperException, InterruptedException {    List<String> children = getZooKeeper().getChildren(path, watch);    Collections.sort(children, new StringCompare());    return children;  }

 

3.2   ChildrenBlockingLock.java

在多客戶端隨機測試時,經常出現程式卡死的情況,無法正常退出。經過添加日誌跟蹤,發現WatchedEvent可能會丟失,也可能會發送給並不是註冊事件的ZooKeeper客戶端。在網上搜索,發現很多人也碰到類似問題。

簡單修改了一下ChildrenBlockingLock#isLockSuccess等待訊號的程式碼,從無參數的死等變成設置一定超時時間等待。關鍵程式碼如下

protected boolean isLockSuccess() {    boolean lockSuccess;    try {      while (true) {        String prevElementName = getPrevElementName();        if (prevElementName == null) {          log.trace("{} 沒有更靠前的子節點,加鎖成功", elementNodeName);          lockSuccess = true;          break;        } else {          // 有更小的節點,說明當前節點沒搶到鎖,註冊前一個節點的監聽。          log.trace("{} 監控 {} 的事件", elementNodeName, prevElementName);          getZooKeeper().exists(this.guidNodeName + "/" + prevElementName, true);          synchronized (mutex) {            // 等待最多一秒            mutex.wait(1000);            log.trace("{} 監控的 {} 有子節點變化", elementNodeName, guidNodeName);          }        }      }    } catch (KeeperException e) {      lockSuccess = false;    } catch (InterruptedException e) {      lockSuccess = false;    }    return lockSuccess;  }

 

3.3   寫鎖 ZooKeeperWriteLock.java

程式碼基本是沿用父類,只需要重載getChildPrefix()方法,

/** 返回寫鎖的前綴 */  protected String getChildPrefix() {    return "w-lock-";  }

 

3.4   讀鎖 ZooKeeperReadLock.java

同寫鎖相比,除了重載getChildPrefix()方法,還重載了getPrevElementName()用來查找最近一個寫鎖。

/** 返回讀鎖的前綴 */  protected String getChildPrefix() {    return "r-lock-";  }    /** 是寫鎖 */  private boolean isWriteLock(String elementName) {    return elementName.startsWith(ZooKeeperWriteLock.FLAG);  }    /** 讀取前一個寫鎖 */  protected String getPrevElementName() throws KeeperException, InterruptedException {    List<String> elementNames = super.getOrderedChildren(this.guidNodeName, false);    super.traceOrderedChildren(this.guidNodeName, elementNames);    String prevWriteElementName = null;    for (String oneElementName : elementNames) {      if (this.elementNodeFullName.endsWith(oneElementName)) {        // 已經到了當前節點        break;      }      if (isWriteLock(oneElementName)) {        prevWriteElementName = oneElementName;      }    }    return prevWriteElementName;  }

 

4      測試用例

測試用例沒想到好的判斷方法,很難使用assert判斷結果,因此做了簡化,根據日誌輸出,靠人眼判斷是否正確。

4.1   測試執行緒類

分別為都鎖和寫鎖構建了兩個內部類

/** 寫鎖執行緒 */  class WriteLockClient extends Thread {    ZooKeeperWriteLock writeLock;      public WriteLockClient() {      try {        this.writeLock = new ZooKeeperWriteLock(address);      } catch (IOException e) {      }    }      public void run() {      writeLock.lock(guidNodeName, this.getName());      try {        Thread.sleep(1000 + random.nextInt(20) * 100);      } catch (InterruptedException e) {      }      writeLock.release(guidNodeName, this.getName());    }  }    /** 讀鎖執行緒 */  class ReadLockClient extends Thread {    ZooKeeperReadLock readLock;      public ReadLockClient() {      try {        this.readLock = new ZooKeeperReadLock(address);      } catch (IOException e) {      }    }
public void run() { readLock.lock(guidNodeName, this.getName()); try { Thread.sleep(1000 + random.nextInt(20) * 100); } catch (InterruptedException e) { } readLock.release(guidNodeName, this.getName()); try { readLock.getZooKeeper().close(); } catch (InterruptedException e) { } } }

 

4.2   讀-讀鎖測試

程式碼

@Test  public void testReadRead() throws IOException, InterruptedException {    ReadLockClient readLock1 = new ReadLockClient();    ReadLockClient readLock2 = new ReadLockClient();    readLock1.start();    readLock2.start();    readLock1.join();    readLock2.join();  }

 

測試結果可以看到,兩個讀鎖並發執行

22:18.861 [Thread-2 INFO] r-lock-0000000000 get read lock : true  22:18.865 [Thread-1 INFO] r-lock-0000000001 get read lock : true  22:20.065 [Thread-2 INFO] r-lock-0000000000 release read lock  22:21.366 [Thread-1 INFO] r-lock-0000000001 release read lock

 

4.3   讀-寫鎖測試

程式碼

@Test  public void testReadWrite() throws IOException, InterruptedException {    ReadLockClient readLock1 = new ReadLockClient();    WriteLockClient writeLock1 = new WriteLockClient();    readLock1.start();    Thread.sleep(50);    writeLock1.start();    readLock1.join();    writeLock1.join();  }

 

測試結果可以看到,首先獲取讀鎖,釋放之後才獲取到寫鎖。

27:40.800 [Thread-1 INFO] r-lock-0000000000 get read lock : true  27:43.310 [Thread-1 INFO] r-lock-0000000000 release read lock  27:43.423 [Thread-2 INFO] w-lock-0000000001 get write lock : true  27:44.423 [Thread-2 INFO] w-lock-0000000001 release write lock

 

4.4   寫-讀鎖測試

程式碼

@Test  public void testWriteRead() throws IOException, InterruptedException {    ReadLockClient readLock1 = new ReadLockClient();    WriteLockClient writeLock1 = new WriteLockClient();    writeLock1.start();    Thread.sleep(50);    readLock1.start();    writeLock1.join();    readLock1.join();  }

 

測試結果可以看到,首先獲取寫鎖,釋放之後才獲取到讀鎖。

29:17.661 [Thread-2 INFO] w-lock-0000000000 get write lock : true  29:19.966 [Thread-2 INFO] w-lock-0000000000 release write lock  29:19.976 [Thread-1 INFO] r-lock-0000000001 get read lock : true  29:22.476 [Thread-1 INFO] r-lock-0000000001 release read lock

 

4.5   多客戶端隨機讀寫鎖測試

測試程式碼

@Test  public void testRandomReadWriteLock() throws IOException, InterruptedException {    int threadCount = 20;    Thread[] lockThreads = new Thread[threadCount];    for (int i = 0; i < threadCount; i++) {      // 一定概率是寫鎖      boolean writeLock = random.nextInt(5) == 0;      if (writeLock) {        lockThreads[i] = new WriteLockClient();      } else {        lockThreads[i] = new ReadLockClient();      }      lockThreads[i].start();    }        for (int i = 0; i < threadCount; i++) {      lockThreads[i].join();    }  }

 

測試結果可以看出,如果連續多個讀鎖會並發執行。為了方便查看,我添加了一些橫線分隔。

30:31.317 [Thread-1 INFO] w-lock-0000000000 get write lock : true  30:32.824 [Thread-1 INFO] w-lock-0000000000 release write lock  ------------------------------------------------------------------  30:32.834 [Thread-17 INFO] r-lock-0000000004 get read lock : true  30:32.835 [Thread-19 INFO] r-lock-0000000002 get read lock : true  30:32.835 [Thread-20 INFO] r-lock-0000000001 get read lock : true  30:32.836 [Thread-18 INFO] r-lock-0000000003 get read lock : true  30:34.135 [Thread-20 INFO] r-lock-0000000001 release read lock  30:34.634 [Thread-17 INFO] r-lock-0000000004 release read lock  30:34.935 [Thread-19 INFO] r-lock-0000000002 release read lock  30:35.036 [Thread-18 INFO] r-lock-0000000003 release read lock  ------------------------------------------------------------------  30:35.053 [Thread-16 INFO] w-lock-0000000005 get write lock : true  30:36.154 [Thread-16 INFO] w-lock-0000000005 release write lock  ------------------------------------------------------------------  30:36.160 [Thread-14 INFO] r-lock-0000000007 get read lock : true  30:36.160 [Thread-15 INFO] r-lock-0000000006 get read lock : true  30:38.160 [Thread-14 INFO] r-lock-0000000007 release read lock  30:38.661 [Thread-15 INFO] r-lock-0000000006 release read lock  ------------------------------------------------------------------  30:38.669 [Thread-13 INFO] w-lock-0000000008 get write lock : true  30:39.969 [Thread-13 INFO] w-lock-0000000008 release write lock  ------------------------------------------------------------------  30:39.976 [Thread-12 INFO] r-lock-0000000009 get read lock : true  30:39.977 [Thread-8 INFO] r-lock-0000000014 get read lock : true  30:39.977 [Thread-6 INFO] r-lock-0000000015 get read lock : true  30:39.984 [Thread-10 INFO] r-lock-0000000011 get read lock : true  30:39.985 [Thread-3 INFO] r-lock-0000000018 get read lock : true  30:39.984 [Thread-7 INFO] r-lock-0000000013 get read lock : true  30:39.984 [Thread-11 INFO] r-lock-0000000010 get read lock : true  30:39.983 [Thread-9 INFO] r-lock-0000000012 get read lock : true  30:39.983 [Thread-2 INFO] r-lock-0000000019 get read lock : true  30:39.982 [Thread-5 INFO] r-lock-0000000016 get read lock : true  30:39.986 [Thread-4 INFO] r-lock-0000000017 get read lock : true  30:40.986 [Thread-3 INFO] r-lock-0000000018 release read lock  30:41.086 [Thread-2 INFO] r-lock-0000000019 release read lock  30:41.285 [Thread-6 INFO] r-lock-0000000015 release read lock  30:41.576 [Thread-12 INFO] r-lock-0000000009 release read lock  30:42.185 [Thread-10 INFO] r-lock-0000000011 release read lock  30:42.186 [Thread-5 INFO] r-lock-0000000016 release read lock  30:42.187 [Thread-11 INFO] r-lock-0000000010 release read lock  30:42.286 [Thread-9 INFO] r-lock-0000000012 release read lock  30:42.586 [Thread-7 INFO] r-lock-0000000013 release read lock  30:42.677 [Thread-8 INFO] r-lock-0000000014 release read lock  30:42.887 [Thread-4 INFO] r-lock-0000000017 release read lock