tensorflow1.x及tensorflow2.x不同版本實現驗證碼識別
近一個假期,入坑深度學習,先從能看得著的驗證碼識別入門。從B站看了幾天的黑馬程式設計師的「3天帶你玩轉python深度學習後「,一是將教程中提到的程式碼一一碼出來;二是針對不同的tensorflow版本,結合網路上其它文章,重新利用tensorflow2.x的keras實現同樣的功能。兩遍程式碼寫完後,深感深度學習的恐怖。
一、Anaconda安裝。
1.為了一些不必要的麻煩,還是先安裝anaconda。下載地址://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/
(這個版本支援python3.8.3)
2.下載完成後,啥也不說了,直接安裝即可,能選擇的一般都選擇上,特別是一些環境變數的設置等。
3.安裝完成後,在「Anaconda prompt”里,使用如下命令安裝tensorflow
pip install tensorflow-cpu==2.2.0 -i https://pypi.doubanio.com/simple/
(注意:本機沒有nvidia顯示卡,所以只能使用cpu版本;另,至於網上說防止出現「avx2「啥的警告,到Github上下載avx版本,去了之後會發現……木法下載,還是用這個版本吧)
4.如上,安裝tensorflow完成,你可以測試一下下了。
import tensorflow as tf print(tf.__version__)
如果提示「Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2」,禁用警告吧。方法如下:
import os os.environ['TF_CPP_MIN_LOG_LEVEL']=2
二、因為我們的程式碼需要分別在tensorflow的不同版本上跑,而tensorflow1.x和2.x幾乎是斷代的,所以需要在anaconda中再配置一個低版本的環境。
1.先設置一下conda的中國源,找到用戶文件夾下的.condarc文件,編輯如下:
channels: - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ show_channel_urls: true ssl_verify: true
2.進入anaconda prompt,在conda中新建一個python3.5的環境,並進入這個環境,然後安裝tensorflow1.8,pandas。
conda create -n python3.5 python=3.5
conda activate python3.5
pip install tensorflow==1.8 -i //pypi.doubanio.com/simple/
pip install pandas -i //pypi.doubanio.com/simple/
三、驗證碼識別的程式碼如下:
1.tensorflow1.8版本:
import tensorflow as tf import glob, os,io,sys import pandas as pd import numpy as np os.environ["TF_CPP_MIN_LOG_LEVEL"]='2' def read_pic(): file_list=glob.glob("./code_imgs/*.png") file_queue=tf.train.string_input_producer(file_list) reader=tf.WholeFileReader() filename,image=reader.read(file_queue) decoded=tf.image.decode_png(image,channels=3) decoded.set_shape([28,96,3]) image_cast=tf.cast(decoded,tf.float32) filename_batch,image_batch=tf.train.batch([filename,image_cast],batch_size=40,num_threads=2,capacity=40) return filename_batch,image_batch def parse_csv(): csv_data=pd.read_csv('labels.csv',names=['file_num','chars'],index_col='file_num') labels=[] for label in csv_data["chars"]: letter=[] for word in label: letter.append(ord(word)-ord('a')) labels.append(letter) csv_data['labels']=labels return csv_data def filename2label(filenames,csv_data): labels=[] for filename in filenames: file_num="".join(filter(str.isdigit,str(filename))) target=csv_data.loc[int(file_num),"labels"] labels.append(target) return np.array(labels) def create_weights(shape): return tf.Variable(initial_value=tf.random_normal(shape=shape,stddev=0.01)) def create_model(x): with tf.variable_scope('conv1'): conv1_weights=create_weights(shape=[5,5,3,32]) conv1_bias=create_weights(shape=[32]) conv1_x=tf.nn.conv2d(input=x,filter=conv1_weights,strides=[1,1,1,1],padding='SAME')+conv1_bias relu1_x=tf.nn.relu(conv1_x) pool1_x=tf.nn.max_pool(value=relu1_x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME') with tf.variable_scope('conv2'): conv2_weights=create_weights(shape=[5,5,32,64]) conv2_bias=create_weights(shape=[64]) conv2_x=tf.nn.conv2d(input=pool1_x,filter=conv2_weights,strides=[1,1,1,1],padding='SAME')+conv2_bias relu2_x=tf.nn.relu(conv2_x) pool2_x=tf.nn.max_pool(value=relu2_x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME') with tf.variable_scope('full_connection'): x_fc=tf.reshape(pool2_x,shape=[-1,7*24*64]) weights_fc=create_weights(shape=[7*24*64,104]) bias_fc=create_weights(shape=[104]) y_predict=tf.matmul(x_fc,weights_fc)+bias_fc return y_predict def list2text(textlist): tm=[] for i in textlist: tm.append(chr(97+i)) return "".join(tm) def train(): filename,image=read_pic() csv_data=parse_csv() x=tf.placeholder(tf.float32,shape=[None,28,96,3]) y_true=tf.placeholder(tf.float32,shape=[None,104]) y_predict=create_model(x) loss_list=tf.nn.sigmoid_cross_entropy_with_logits(labels=y_true,logits=y_predict) loss=tf.reduce_mean(loss_list) optimizer=tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)#優化損失 equal_list=tf.reduce_all(tf.equal(tf.argmax(tf.reshape(y_predict,shape=[-1,4,26]),axis=2), tf.argmax(tf.reshape(y_true,shape=[-1,4,26]),axis=2)),axis=1) accurary=tf.reduce_mean(tf.cast(equal_list,tf.float32)) init=tf.global_variables_initializer() saver=tf.train.Saver() with tf.Session() as sess: sess.run(init) coord=tf.train.Coordinator() threads=tf.train.start_queue_runners(sess=sess,coord=coord) try: for i in range(10000): filename_val,image_val=sess.run([filename,image]) labels=filename2label(filename_val,csv_data) labels_value=tf.reshape(tf.one_hot(labels,depth=26),[-1,104]).eval() _,error,accurary_value=sess.run([optimizer,loss,accurary],feed_dict={x:image_val,y_true:labels_value}) print("The %d Train Result---loss:%f,accurary:%f" % (i+1,error,accurary_value)) if accurary_value>0.99: saver.save(sess,'model/crack_captcha.model99',global_step=i) break except tf.errors.OutOfRangeError: print("done ,now let's kill all threads") finally: coord.request_stop() print("all threads ask stop") coord.join(threads) print("all thread stopped") def crackcaptcha(): truetext=[] with open('a.txt','r') as f: for filename in f.readlines(): truetext.append(filename.strip('\r\n')) dis='False' goodnum=0 x=tf.placeholder(tf.float32,shape=[None,28,96,3]) y_true=tf.placeholder(tf.float32,shape=[None,104]) keep_prob = tf.placeholder(tf.float32) y_predict=create_model(x) saver=tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) checkpoint=tf.train.get_checkpoint_state('model') if checkpoint and checkpoint.model_checkpoint_path: saver.restore(sess,checkpoint.model_checkpoint_path) print("successfully loaded:",checkpoint.model_checkpoint_path) else: print("Could not found model files") for i in range(1,201): image=tf.read_file('crackimgs/'+str(i)+'.png') decoded=tf.image.decode_png(image,channels=3) decoded.set_shape([28,96,3]) decoded_val=sess.run(decoded) image=np.array(decoded_val) predict=tf.argmax(tf.reshape(y_predict,[-1,4,26]),2) outtext=sess.run(predict,feed_dict={x:[image],keep_prob:1}) cracktext=list2text(outtext[0].tolist()) if cracktext==truetext[i-1]: goodnum+=1 dis='True' else: dis='False' print('The {} Image Content is:{},Your Crack Word is :{},Result:{}'.format(i,truetext[i-1],cracktext,dis)) print('The End accurary is:{}%'.format(goodnum/200*100)) if __name__=='__main__': train() crackcaptcha()
View Code
在運行上面的程式碼時,如果出現:「dtypes.py:521: FutureWarning: Passing (type, 1) or ‘1type’ as a synonym」等警告資訊,打開dtypes.py這個文件,修改如下:
np_resource = np.dtype([("resource", np.ubyte, 1)])修改為:np_resource = np.dtype([("resource", np.ubyte, (1,))])
2.tensorflow2.3版本:
import tensorflow as tf import pandas as pd import glob,random,os import numpy as np from PIL import Image os.environ["TF_CPP_MIN_LOG_LEVEL"]='2' alphabet = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] def text2vec(text): vector = np.zeros([4, 26]) for i, c in enumerate(text): idx = alphabet.index(c) vector[i][idx] = 1.0 return vector def vec2text(vec): text = [] for i, c in enumerate(vec): text.append(alphabet[c]) return "".join(text) def read_pic(batch_size): batch_x = np.zeros([batch_size, 28, 96,3]) batch_y = np.zeros([batch_size, 4, 26]) file_list=glob.glob('code_imgs2/*.png') batchfile=np.random.choice(file_list,batch_size)#隨機取出batch_size個圖片 for i,filename in enumerate(batchfile): text=filename.replace('code_imgs2\\','').replace('.png','') image=tf.io.read_file(filename) image_ar=tf.io.decode_png(image) image_ar=tf.cast(image_ar,tf.float32) batch_x[i,:]=image_ar batch_y[i,:]=text2vec(text) return batch_x,batch_y def crack_captcha_cnn(): model=tf.keras.Sequential() model.add(tf.keras.layers.Conv2D(filters=32,kernel_size=(3,3),activation="relu",input_shape=(28,96,3),padding="same")) model.add(tf.keras.layers.PReLU()) model.add(tf.keras.layers.MaxPool2D((2,2),strides=2)) model.add(tf.keras.layers.Conv2D(filters=64,kernel_size=(5,5),activation="relu",input_shape=(28,96,3),padding="same")) model.add(tf.keras.layers.PReLU()) model.add(tf.keras.layers.MaxPool2D((2,2),strides=2)) model.add(tf.keras.layers.Conv2D(filters=128,kernel_size=(5,5),activation="relu",input_shape=(28,96,3),padding="same")) model.add(tf.keras.layers.PReLU()) model.add(tf.keras.layers.MaxPool2D((2,2),strides=2)) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(4*26)) model.add(tf.keras.layers.Reshape([4,26])) model.add(tf.keras.layers.Softmax()) return model def train(): model=crack_captcha_cnn() model.compile(optimizer='Adam',metrics=['accuracy'],loss='categorical_crossentropy') for i in range(200): batch_x,batch_y=read_pic(256) model.fit(batch_x,batch_y,epochs=4) if i%20==0 and i>0: model.save('slj_tf2_model') def predict(): model=tf.keras.models.load_model('slj_tf2_model') file_list=glob.glob('crackimgs2/*.png') true_count=0 for filename in file_list: data_x = np.zeros([1, 28, 96,3]) image=tf.io.read_file(filename) image_ar=tf.io.decode_png(image) image_ar=tf.cast(image_ar,tf.float32) data_x[0,:]=image_ar prediction_value = model.predict(data_x) predict=tf.argmax(tf.reshape(prediction_value,[-1,4,26]),2) index_ar=predict.numpy().tolist() crack_text=vec2text(index_ar[0]) true_text=filename.replace('crackimgs2\\','').replace('.png','') if crack_text==true_text: true_count+=1 print('原驗證碼:{};破解後結果:{}'.format(true_text,crack_text)) print('共破解200個,其中正確{}個,正確率為{}%'.format(true_count,true_count/200*100)) if __name__=='__main__': # train() predict()
View Code
四、程式所需要的圖片文件及csv文件,在此下載。
鏈接: //pan.baidu.com/s/15npPVXnUEmRCNo1KfqeLOQ 提取碼: kpr1