restapi(8)- restapi-sql:用戶自主的服務
- 2019 年 10 月 28 日
- 筆記
學習函數式編程初衷是看到自己熟悉的oop程式語言和sql資料庫在現代商業社會中前景暗淡,準備完全放棄windows技術棧轉到分散式大數據技術領域的。但是在現實中理想總是不如人意,本來想在一個規模較小的公司展展拳腳,以為小公司會少點歷史包袱,有利於全面技術改造。但現實是:即使是小公司,一旦有個成熟的產品,那麼進行全面的技術更新基本上是不可能的了,因為公司要生存,開發人員很難新舊技術之間隨時切換。除非有狂熱的熱情,員工怠慢甚至抵制情緒不容易解決。只能採取逐步切換方式:保留原有產品的後期維護不動,新產品開發用一些新的技術。在我們這裡的情況就是:以前一堆c#、sqlserver的東西必須保留,新的功能比如大數據、ai、識別等必須用新的手段如scala、python、dart、akka、kafka、cassandra、mongodb來開發。好了,新舊兩個開發平台之間的軟體系統對接又變成了一個問題。
現在我們這裡有個需求:把在linux-ubuntu akka-cluster集群環境里mongodb里數據處理的結果傳給windows server下SQLServer里。這是一種典型的異系統集成場景。我的解決方案是通過一個restapi服務作為兩個系統的數據橋樑,這個restapi的最基本要求是:
1、支援任何作業系統前端:這個沒什麼問題,在http層上通過json交換數據
2、能讀寫mongodb:在前面討論的restapi-mongo已經實現了這一功能
3、能讀寫windows server環境下的sqlserver:這個是本篇討論的主題
4、用戶能夠比較方便的對平台資料庫進行操作,最好免去前後雙方每類操作都需要進行協定model這一過程,也就是能達到用戶隨意調用服務
前面曾經實現了一個jdbc-engine項目,基於scalikejdbc,不過只示範了slick-h2相關的功能。現在需要sqlserver-jdbc驅動,然後試試能不能在JVM里驅動windows下的sqlserver。maven里找不到sqlserver的驅動,但從微軟官網可以下載mssql-jdbc-7.0.0.jre8.jar。這是個jar,在sbt里稱作unmanagedjar,不能擺在build.sbt的dependency里。這個需要擺在項目根目錄下的lib目錄下即可(也可以在放在build.sbt里unmanagedBase :=?? 指定的路徑下)。然後是資料庫連接,下面是可以使用sqlserver的application.conf配置文件內容:
# JDBC settings prod { db { h2 { driver = "org.h2.Driver" url = "jdbc:h2:tcp://localhost/~/slickdemo" user = "" password = "" poolFactoryName = "hikaricp" numThreads = 10 maxConnections = 12 minConnections = 4 keepAliveConnection = true } mysql { driver = "com.mysql.cj.jdbc.Driver" url = "jdbc:mysql://localhost:3306/testdb" user = "root" password = "123" poolFactoryName = "hikaricp" numThreads = 10 maxConnections = 12 minConnections = 4 keepAliveConnection = true } postgres { driver = "org.postgresql.Driver" url = "jdbc:postgresql://localhost:5432/testdb" user = "root" password = "123" poolFactoryName = "hikaricp" numThreads = 10 maxConnections = 12 minConnections = 4 keepAliveConnection = true } mssql { driver = "com.microsoft.sqlserver.jdbc.SQLServerDriver" url = "jdbc:sqlserver://192.168.11.164:1433;integratedSecurity=false;Connect Timeout=3000" user = "sa" password = "Tiger2020" poolFactoryName = "hikaricp" numThreads = 10 maxConnections = 12 minConnections = 4 keepAliveConnection = true connectionTimeout = 3000 } termtxns { driver = "com.microsoft.sqlserver.jdbc.SQLServerDriver" url = "jdbc:sqlserver://192.168.11.164:1433;DATABASE=TERMTXNS;integratedSecurity=false;Connect Timeout=3000" user = "sa" password = "Tiger2020" poolFactoryName = "hikaricp" numThreads = 10 maxConnections = 12 minConnections = 4 keepAliveConnection = true connectionTimeout = 3000 } crmdb { driver = "com.microsoft.sqlserver.jdbc.SQLServerDriver" url = "jdbc:sqlserver://192.168.11.164:1433;DATABASE=CRMDB;integratedSecurity=false;Connect Timeout=3000" user = "sa" password = "Tiger2020" poolFactoryName = "hikaricp" numThreads = 10 maxConnections = 12 minConnections = 4 keepAliveConnection = true connectionTimeout = 3000 } } # scallikejdbc Global settings scalikejdbc.global.loggingSQLAndTime.enabled = true scalikejdbc.global.loggingSQLAndTime.logLevel = info scalikejdbc.global.loggingSQLAndTime.warningEnabled = true scalikejdbc.global.loggingSQLAndTime.warningThresholdMillis = 1000 scalikejdbc.global.loggingSQLAndTime.warningLogLevel = warn scalikejdbc.global.loggingSQLAndTime.singleLineMode = false scalikejdbc.global.loggingSQLAndTime.printUnprocessedStackTrace = false scalikejdbc.global.loggingSQLAndTime.stackTraceDepth = 10 }
這個文件里的mssql,termtxns,crmdb段落都是給sqlserver的,它們都使用hikaricp執行緒池管理。
在jdbc-engine里啟動資料庫方式如下:
ConfigDBsWithEnv("prod").setup('termtxns) ConfigDBsWithEnv("prod").setup('crmdb) ConfigDBsWithEnv("prod").loadGlobalSettings()
這段打開了在配置文件中用termtxns,crmdb註明的資料庫。
下面是SqlHttpServer.scala的程式碼:
package com.datatech.rest.sql import akka.http.scaladsl.Http import akka.http.scaladsl.server.Directives._ import pdi.jwt._ import AuthBase._ import MockUserAuthService._ import com.datatech.sdp.jdbc.config.ConfigDBsWithEnv import akka.actor.ActorSystem import akka.stream.ActorMaterializer import Repo._ import SqlRoute._ object SqlHttpServer extends App { implicit val httpSys = ActorSystem("sql-http-sys") implicit val httpMat = ActorMaterializer() implicit val httpEC = httpSys.dispatcher ConfigDBsWithEnv("prod").setup('termtxns) ConfigDBsWithEnv("prod").setup('crmdb) ConfigDBsWithEnv("prod").loadGlobalSettings() implicit val authenticator = new AuthBase() .withAlgorithm(JwtAlgorithm.HS256) .withSecretKey("OpenSesame") .withUserFunc(getValidUser) val route = path("auth") { authenticateBasic(realm = "auth", authenticator.getUserInfo) { userinfo => post { complete(authenticator.issueJwt(userinfo))} } } ~ pathPrefix("api") { authenticateOAuth2(realm = "api", authenticator.authenticateToken) { token => new SqlRoute("sql", token)(new JDBCRepo) .route // ~ ... } } val (port, host) = (50081,"192.168.11.189") val bindingFuture = Http().bindAndHandle(route,host,port) println(s"Server running at $host $port. Press any key to exit ...") scala.io.StdIn.readLine() bindingFuture.flatMap(_.unbind()) .onComplete(_ => httpSys.terminate()) }
服務入口在http://mydemo.com/api/sql,服務包括get,post,put三類,參考這個SqlRoute:
package com.datatech.rest.sql import akka.http.scaladsl.server.Directives import akka.stream.ActorMaterializer import akka.http.scaladsl.model._ import akka.actor.ActorSystem import com.datatech.rest.sql.Repo.JDBCRepo import akka.http.scaladsl.common._ import spray.json.DefaultJsonProtocol import akka.http.scaladsl.marshallers.sprayjson.SprayJsonSupport trait JsFormats extends SprayJsonSupport with DefaultJsonProtocol object JsConverters extends JsFormats { import SqlModels._ implicit val brandFormat = jsonFormat2(Brand) implicit val customerFormat = jsonFormat6(Customer) } object SqlRoute { import JsConverters._ implicit val jsonStreamingSupport = EntityStreamingSupport.json() .withParallelMarshalling(parallelism = 8, unordered = false) class SqlRoute(val pathName: String, val jwt: String)(repo: JDBCRepo)( implicit sys: ActorSystem, mat: ActorMaterializer) extends Directives with JsonConverter { val route = pathPrefix(pathName) { path(Segment / Remaining) { case (db, tbl) => (get & parameter('sqltext)) { sql => { val rsc = new RSConverter val rows = repo.query[Map[String,Any]](db, sql, rsc.resultSet2Map) complete(rows.map(m => toJson(m))) } } ~ (post & parameter('sqltext)) { sql => entity(as[String]){ json => repo.batchInsert(db,tbl,sql,json) complete(StatusCodes.OK) } } ~ put { entity(as[Seq[String]]) { sqls => repo.update(db, sqls) complete(StatusCodes.OK) } } } } } }
jdbc-engine的特點是可以用字元類型的sql語句來操作。所以我們可以通過傳遞字元串型的sql語句來實現服務調用,使用門檻低,方便通用。restapi-sql提供的是對伺服器端sqlserver的普通操作,包括讀get,寫入post,更改put。這些sqlserver操作部分是在JDBCRepo里的:
package com.datatech.rest.sql import com.datatech.sdp.jdbc.engine.JDBCEngine._ import com.datatech.sdp.jdbc.engine.{JDBCQueryContext, JDBCUpdateContext} import scalikejdbc._ import akka.stream.ActorMaterializer import com.datatech.sdp.result.DBOResult.DBOResult import akka.stream.scaladsl._ import scala.concurrent._ import SqlModels._ object Repo { class JDBCRepo(implicit ec: ExecutionContextExecutor, mat: ActorMaterializer) { def query[R](db: String, sqlText: String, toRow: WrappedResultSet => R): Source[R,Any] = { //construct the context val ctx = JDBCQueryContext( dbName = Symbol(db), statement = sqlText ) jdbcAkkaStream(ctx,toRow) } def query(db: String, tbl: String, sqlText: String) = { //construct the context val ctx = JDBCQueryContext( dbName = Symbol(db), statement = sqlText ) jdbcQueryResult[Vector,RS](ctx,getConverter(tbl)).toFuture[Vector[RS]] } def update(db: String, sqlTexts: Seq[String]): DBOResult[Seq[Long]] = { val ctx = JDBCUpdateContext( dbName = Symbol(db), statements = sqlTexts ) jdbcTxUpdates(ctx) } def bulkInsert[P](db: String, sqlText: String, prepParams: P => Seq[Any], params: Source[P,_]) = { val insertAction = JDBCActionStream( dbName = Symbol(db), parallelism = 4, processInOrder = false, statement = sqlText, prepareParams = prepParams ) params.via(insertAction.performOnRow).to(Sink.ignore).run() } def batchInsert(db: String, tbl: String, sqlText: String, jsonParams: String):DBOResult[Seq[Long]] = { val ctx = JDBCUpdateContext( dbName = Symbol(db), statements = Seq(sqlText), batch = true, parameters = getSeqParams(jsonParams,sqlText) ) jdbcBatchUpdate[Seq](ctx) } } import monix.execution.Scheduler.Implicits.global implicit class DBResultToFuture(dbr: DBOResult[_]){ def toFuture[R] = { dbr.value.value.runToFuture.map { eor => eor match { case Right(or) => or match { case Some(r) => r.asInstanceOf[R] case None => throw new RuntimeException("Operation produced None result!") } case Left(err) => throw new RuntimeException(err) } } } } }
讀query部分即 def query[R](db: String, sqlText: String, toRow: WrappedResultSet => R): Source[R,Any] = {…} 這個函數返回Source[R,Any],下面我們好好談談這個R:R是讀的結果,通常是某個類或model,比如讀取Person記錄返回一組Person類的實例。這裡有一種強類型的感覺。一開始我也是隨大流堅持建model後用toJson[E],fromJson[E]這樣做線上數據轉換。現在的問題是restapi-sql是一項公共服務,使用者知道sqlserver上有些什麼表,然後希望通過sql語句來從這些表裡讀取數據。這些sql語句可能超出表的界限如sql join, union等,如果我們堅持每個返回結果都必須有個對應的model,那麼顯然就會犧牲這個服務的通用性。實際上,http線上數據交換本身就不可能是強類型的,因為經過了json轉換。對於json轉換來說,只要求欄位名稱、欄位類型對稱就行了。至於從什麼類型轉換成了另一個什麼類型都沒問題。所以,欄位名+欄位值的表現形式不就是Map[K,V]嗎,我們就用Map[K,V]作為萬能model就行了,沒人知道。也就是說用戶方通過sql語句指定返回的欄位名稱,它們可能是任何類型Any,具體類型自然會由資料庫補上。服務方從資料庫讀取結果ResultSet後轉成Map[K,V]然後再轉成json返回給用戶,用戶可以用Map[String,Any]資訊產生任何類型,這就是自主。好,就來看看如何將ResultSet轉成Map[String,Any]:
package com.datatech.rest.sql import scalikejdbc._ import java.sql.ResultSetMetaData class RSConverter { import RSConverterUtil._ var rsMeta: ResultSetMetaData = _ var columnCount: Int = 0 var rsFields: List[(String,String)] = List[(String,String)]() def getFieldsInfo:List[(String,String)] = ( 1 until columnCount).foldLeft(List[(String,String)]()) { case (cons,i) => (rsMeta.getColumnLabel(i) -> rsMeta.getColumnTypeName(i)) :: cons } def resultSet2Map(rs: WrappedResultSet): Map[String,Any] = { if(columnCount == 0) { rsMeta = rs.underlying.getMetaData columnCount = rsMeta.getColumnCount rsFields = getFieldsInfo } rsFields.foldLeft(Map[String,Any]()) { case (m,(n,t)) => m + (n -> rsFieldValue(n,t,rs)) } } } object RSConverterUtil { import scala.collection.immutable.TreeMap def map2Params(stm: String, m: Map[String,Any]): Seq[Any] = { val sortedParams = m.foldLeft(TreeMap[Int,Any]()) { case (t,(k,v)) => t + (stm.indexOfSlice(k) -> v) } sortedParams.map(_._2).toSeq } def rsFieldValue(fldname: String, fldType: String, rs: WrappedResultSet): Any = fldType match { case "LONGVARCHAR" => rs.string(fldname) case "VARCHAR" => rs.string(fldname) case "CHAR" => rs.string(fldname) case "BIT" => rs.boolean(fldname) case "TIME" => rs.time(fldname) case "TIMESTAMP" => rs.timestamp(fldname) case "ARRAY" => rs.array(fldname) case "NUMERIC" => rs.bigDecimal(fldname) case "BLOB" => rs.blob(fldname) case "TINYINT" => rs.byte(fldname) case "VARBINARY" => rs.bytes(fldname) case "BINARY" => rs.bytes(fldname) case "CLOB" => rs.clob(fldname) case "DATE" => rs.date(fldname) case "DOUBLE" => rs.double(fldname) case "REAL" => rs.float(fldname) case "FLOAT" => rs.float(fldname) case "INTEGER" => rs.int(fldname) case "SMALLINT" => rs.int(fldname) case "Option[Int]" => rs.intOpt(fldname) case "BIGINT" => rs.long(fldname) } }
這段主要功能是將JDBC的ResultSet轉換成Map[String,Any]。在前面討論的restapi-mongo我們可以進行Document到Map[String,Any]的轉換以實現同樣的目的。
下面是個調用query服務的例子:
val getAllRequest = HttpRequest( HttpMethods.GET, uri = "http://192.168.11.189:50081/api/sql/termtxns/brand?sqltext=SELECT%20*%20FROM%20BRAND", ).addHeader(authentication) (for { response <- Http().singleRequest(getAllRequest) json <- Unmarshal(response.entity).to[String] } yield message).andThen { case Success(msg) => println(s"Received json collection: $json") case Failure(err) => println(s"Error: ${err.getMessage}") }
特點是我只需要提供sql語句,服務就會返回一個json數組,然後我怎麼把json轉成任何類型就隨我高興了。
再看看post服務:在這裡希望實現一種批次型插入表的功能,比如從一個數據表裡把數據搬到另外一個表。一般來講在jdbc操作里首先得提供一個模版,如:insert into person(fullname,code) values(?,?),然後通過提供一組參數值來實現批次插入。當然,為安全起見,我們還是需要確定正確的參數位置,這個可以從sql語句里獲取:
def map2Params(stm: String, m: Map[String,Any]): Seq[Any] = { val sortedParams = m.foldLeft(TreeMap[Int,Any]()) { case (t,(k,v)) => t + (stm.toUpperCase.indexOfSlice(k.toUpperCase) -> v) } sortedParams.map(_._2).toSeq } def getSeqParams(json: String, sql: String): Seq[Seq[Any]] = { val seqOfjson = fromJson[Seq[String]](json) val prs = seqOfjson.map(fromJson[Map[String,Any]]) prs.map(RSConverterUtil.map2Params(sql,_)) }
下面是個批次插入的示範程式碼:
val encodedSelect = URLEncode.encode("select id as code, name as fullname from members") val encodedInsert = URLEncode.encode("insert into person(fullname,code) values(?,?)") val getMembers = HttpRequest( HttpMethods.GET, uri = "http://192.168.0.189:50081/api/sql/h2/members?sqltext="+encodedSelect ).addHeader(authentication) val postRequest = HttpRequest( HttpMethods.POST, uri = "http://192.168.0.189:50081/api/sql/h2/person?sqltext="+encodedInsert, ).addHeader(authentication) (for { _ <- update("http://192.168.0.189:50081/api/sql/h2/person",Seq(createCTX)) respMembers <- Http().singleRequest(getMembers) message <- Unmarshal(respMembers.entity).to[String] reqEntity <- Marshal(message).to[RequestEntity] respInsert <- Http().singleRequest(postRequest.copy(entity = reqEntity)) // HttpEntity(ContentTypes.`application/json`,ByteString(message)))) } yield respInsert).onComplete { case Success(r@HttpResponse(StatusCodes.OK, _, entity, _)) => println("builk insert successful!") case Success(_) => println("builk insert failed!") case Failure(err) => println(s"Error: ${err.getMessage}") }
你看,我特別把參數值清單里欄位位置和insert sql里欄位先後位置顛倒了,但還是得到正確的結果。
最後是put:這是為批次型的事物處理設計的。接受一條或者多條無參數sql指令,多條指令會在一個事物中執行。具體使用方式如下:
def update(url: String, cmds: Seq[String])(implicit token: Authorization): Future[HttpResponse] = for { reqEntity <- Marshal(cmds).to[RequestEntity] response <- Http().singleRequest(HttpRequest( method=HttpMethods.PUT,uri=url,entity=reqEntity) .addHeader(token)) } yield response
在上面的討論里介紹了基於sqlserver的rest服務,與前面討論的restapi-mongo從原理上區別並不大,重點是實現了用戶主導的資料庫操作。