C#刷遍Leetcode面試題系列連載(4):No.633 – 平方數之和

  • 2019 年 10 月 21 日
  • 筆記

上篇文章中一道數學問題 – 自除數,今天我們接著分析 LeetCode 中的另一道數學題吧~

img

今天要給大家分析的面試題是 LeetCode 上第 633 號問題,

Leetcode 633 – 平方數之和

https://leetcode.com/problems/sum-of-square-numbers/

題目描述

給定一個非負整數 c ,你要判斷是否存在兩個整數 ab,使得 (a^2 + b^2 = c)

示例1:

輸入: 5  輸出: True  解釋: 1 * 1 + 2 * 2 = 5

示例2:

輸入: 3  輸出: False

Input:

5  2  100

Expected answer:

true  true  true

相關話題

相似題目


解題思路:

做一次循環,用目標和減去循環變數的平方,如果剩下的部分依然是完全平方的情形存在,就返回true;否則返回false。

假定 $i leq a leq b $,根據數據的對稱性,循環變數 i 只需取到 $i^2 cdot 2 leq c $ 即可覆蓋所有情形.

已AC程式碼:

最初版本:

public class Solution  {      public bool JudgeSquareSum(int c)      {          for (int i = 0; c - 2 * i * i >= 0; i++)          {              double diff = c - i*i;              if ((int)(Math.Ceiling(Math.Sqrt(diff))) == (int)(Math.Floor(Math.Sqrt(diff))))  // 若向上取整=向下取整,則該數開方後是整數                  return true;          }            return false;      }  }

Rank:

執行用時: 56 ms, 在所有 csharp 提交中擊敗了68.18%的用戶.

優化1:

public class Solution  {      public bool JudgeSquareSum(int c)      {          for (int i = 0; c - 2 * i * i >= 0; i++)          {              int diff = c - i*i;              if (IsPerfectSquare(diff))                  return true;          }            return false;      }      private bool IsPerfectSquare(int num)      {          double sq1 = Math.Sqrt(num);          int sq2 = (int)Math.Sqrt(num);          if (Math.Abs(sq1 - (double)sq2) < 10e-10)              return true;          return false;      }  }

Rank:

執行用時: 52 ms, 在所有 csharp 提交中擊敗了90.91%的用戶.

優化2(根據文末參考資料[1]中MPUCoder 的回答改寫):

public class Solution  {      public bool JudgeSquareSum(int c)      {          for (int i = 0; i <= c && c - i * i >= 0; i++)          {              int diff = c - i*i;              if (IsPerfectSquare(diff))                  return true;          }            return false;      }      public bool IsPerfectSquare(int num)      {          if ((0x0213 & (1 << (num & 15))) != 0)  //TRUE only if n mod 16 is 0, 1, 4, or 9          {              int t = (int)Math.Floor(Math.Sqrt((double)num) + 0.5);              return t * t == num;          }          return false;      }  }

Rank:

執行用時: 44 ms, 在所有 csharp 提交中擊敗了100.00%的用戶.

LeetCode-dotNET匠人

優化3(根據文末參考資料[1]中 Simon 的回答改寫):

public class Solution  {      public bool JudgeSquareSum(int c)      {          for (int i = 0; c - i * i >= 0; i++)          {              long diff = c - i*i;              if (IsSquareFast(diff))                  return true;          }            return false;      }        bool IsSquareFast(long n)      {          if ((0x2030213 & (1 << (int)(n & 31))) > 0)          {              long t = (long)Math.Round(Math.Sqrt((double)n));              bool result = t * t == n;              return result;          }          return false;      }  }

Rank:

執行用時: 48 ms, 在所有 csharp 提交中擊敗了100.00%的用戶.

另外,stackoverflow上還推薦了一種寫法:

public class Solution  {      public bool JudgeSquareSum(int c)      {          for (int i = 0; c - 2 * i * i >= 0; i++)          {              double diff = c - i*i;              if (Math.Abs(Math.Sqrt(diff) % 1) < 0.000001)                  return true;          }            return false;      }  }

事實上,速度並不快~

Rank:

執行用時: 68 ms, 在所有 csharp 提交中擊敗了27.27%的用戶.

相應程式碼已經上傳到github:

https://github.com/yanglr/Leetcode-CSharp/tree/master/leetcode633

參考資料:

[1] Fast way to test whether a number is a square
https://www.johndcook.com/blog/2008/11/17/fast-way-to-test-whether-a-number-is-a-square/

[2] Shortest way to check perfect Square? – C#
https://stackoverflow.com/questions/4885925/shortest-way-to-check-perfect-square/4886006#4886006