部署一套完整的Kubernetes高可用集群(二進位,v1.18版)
- 2020 年 7 月 21 日
- 筆記
- 【Docker k8s】, 【運維知多少】
一、前置知識點
1.1 生產環境可部署Kubernetes集群的兩種方式
目前生產部署Kubernetes集群主要有兩種方式:
- kubeadm
Kubeadm是一個K8s部署工具,提供kubeadm init和kubeadm join,用於快速部署Kubernetes集群。
官方地址://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm/
- 二進位包
從github下載發行版的二進位包,手動部署每個組件,組成Kubernetes集群。
Kubeadm降低部署門檻,但屏蔽了很多細節,遇到問題很難排查。如果想更容易可控,推薦使用二進位包部署Kubernetes集群,雖然手動部署麻煩點,期間可以學習很多工作原理,也利於後期維護。
1.2 安裝要求
在開始之前,部署Kubernetes集群機器需要滿足以下幾個條件:
- 一台或多台機器,作業系統 CentOS7.x-86_x64
- 硬體配置:2GB或更多RAM,2個CPU或更多CPU,硬碟30GB或更多
- 可以訪問外網,需要拉取鏡像,如果伺服器不能上網,需要提前下載鏡像並導入節點
- 禁止swap分區
1.3 準備環境
軟體環境:
軟體 | 版本 |
---|---|
作業系統 | CentOS7.8_x64 (mini) |
Docker | 19-ce |
Kubernetes | 1.18 |
伺服器整體規劃:
角色 | IP | 組件 |
---|---|---|
k8s-master1 | 192.168.31.71 | kube-apiserver,kube-controller-manager,kube-scheduler,etcd |
k8s-master2 | 192.168.31.74 | kube-apiserver,kube-controller-manager,kube-scheduler |
k8s-node1 | 192.168.31.72 | kubelet,kube-proxy,docker etcd |
k8s-node2 | 192.168.31.73 | kubelet,kube-proxy,docker,etcd |
Load Balancer(Master) | 192.168.31.81 ,192.168.31.88 (VIP) | Nginx L4 |
Load Balancer(Backup) | 192.168.31. 82 | Nginx L4 |
須知:考慮到有些朋友電腦配置較低,這麼多虛擬機跑不動,所以這一套高可用集群分兩部分實施,先部署一套單Master架構(192.168.31.71/72/73),再擴容為多Master架構(上述規劃),順便熟悉下Master擴容流程。
單Master架構圖:
單Master伺服器規劃:
角色 | IP | 組件 |
---|---|---|
k8s-master | 192.168.31.71 | kube-apiserver,kube-controller-manager,kube-scheduler,etcd |
k8s-node1 | 192.168.31.72 | kubelet,kube-proxy,docker etcd |
k8s-node2 | 192.168.31.73 | kubelet,kube-proxy,docker,etcd |
1.4 作業系統初始化配置
# 關閉防火牆 systemctl stop firewalld systemctl disable firewalld # 關閉selinux sed -i 's/enforcing/disabled/' /etc/selinux/config # 永久 setenforce 0 # 臨時 # 關閉swap swapoff -a # 臨時 sed -ri 's/.*swap.*/#&/' /etc/fstab # 永久 # 根據規劃設置主機名 hostnamectl set-hostname <hostname> # 在master添加hosts cat >> /etc/hosts << EOF 192.168.31.71 k8s-master 192.168.31.72 k8s-node1 192.168.31.73 k8s-node2 EOF # 將橋接的IPv4流量傳遞到iptables的鏈 cat > /etc/sysctl.d/k8s.conf << EOF net.bridge.bridge-nf-call-ip6tables = 1 net.bridge.bridge-nf-call-iptables = 1 EOF sysctl --system # 生效 # 時間同步 yum install ntpdate -y ntpdate time.windows.com
二、部署Etcd集群
Etcd 是一個分散式鍵值存儲系統,Kubernetes使用Etcd進行數據存儲,所以先準備一個Etcd資料庫,為解決Etcd單點故障,應採用集群方式部署,這裡使用3台組建集群,可容忍1台機器故障,當然,你也可以使用5台組建集群,可容忍2台機器故障。
節點名稱 | IP |
---|---|
etcd-1 | 192.168.31.71 |
etcd-2 | 192.168.31.72 |
etcd-3 | 192.168.31.73 |
註:為了節省機器,這裡與K8s節點機器復用。也可以獨立於k8s集群之外部署,只要apiserver能連接到就行。
2.1 準備cfssl證書生成工具
cfssl是一個開源的證書管理工具,使用json文件生成證書,相比openssl更方便使用。
找任意一台伺服器操作,這裡用Master節點。
wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64 wget https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64 wget https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64 chmod +x cfssl_linux-amd64 cfssljson_linux-amd64 cfssl-certinfo_linux-amd64 mv cfssl_linux-amd64 /usr/local/bin/cfssl mv cfssljson_linux-amd64 /usr/local/bin/cfssljson mv cfssl-certinfo_linux-amd64 /usr/bin/cfssl-certinfo
2.2 生成Etcd證書
1. 自簽證書頒發機構(CA)
創建工作目錄:
mkdir -p ~/TLS/{etcd,k8s}
cd TLS/etcd
自簽CA:
cat > ca-config.json << EOF { "signing": { "default": { "expiry": "87600h" }, "profiles": { "www": { "expiry": "87600h", "usages": [ "signing", "key encipherment", "server auth", "client auth" ] } } } } EOF cat > ca-csr.json << EOF { "CN": "etcd CA", "key": { "algo": "rsa", "size": 2048 }, "names": [ { "C": "CN", "L": "Beijing", "ST": "Beijing" } ] } EOF
生成證書:
cfssl gencert -initca ca-csr.json | cfssljson -bare ca - ls *pem ca-key.pem ca.pem
2. 使用自簽CA簽發Etcd HTTPS證書
創建證書申請文件:
cat > server-csr.json << EOF { "CN": "etcd", "hosts": [ "192.168.31.71", "192.168.31.72", "192.168.31.73" ], "key": { "algo": "rsa", "size": 2048 }, "names": [ { "C": "CN", "L": "BeiJing", "ST": "BeiJing" } ] } EOF
註:上述文件hosts欄位中IP為所有etcd節點的集群內部通訊IP,一個都不能少!為了方便後期擴容可以多寫幾個預留的IP。
生成證書:
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=www server-csr.json | cfssljson -bare server ls server*pem server-key.pem server.pem
2.3 從Github下載二進位文件
下載地址://github.com/etcd-io/etcd/releases/download/v3.4.9/etcd-v3.4.9-linux-amd64.tar.gz
2.4 部署Etcd集群
以下在節點1上操作,為簡化操作,待會將節點1生成的所有文件拷貝到節點2和節點3.
1. 創建工作目錄並解壓二進位包
mkdir /opt/etcd/{bin,cfg,ssl} -p tar zxvf etcd-v3.4.9-linux-amd64.tar.gz mv etcd-v3.4.9-linux-amd64/{etcd,etcdctl} /opt/etcd/bin/
2. 創建etcd配置文件
cat > /opt/etcd/cfg/etcd.conf << EOF #[Member] ETCD_NAME="etcd-1" ETCD_DATA_DIR="/var/lib/etcd/default.etcd" ETCD_LISTEN_PEER_URLS="//192.168.31.71:2380" ETCD_LISTEN_CLIENT_URLS="//192.168.31.71:2379" #[Clustering] ETCD_INITIAL_ADVERTISE_PEER_URLS="//192.168.31.71:2380" ETCD_ADVERTISE_CLIENT_URLS="//192.168.31.71:2379" ETCD_INITIAL_CLUSTER="etcd-1=//192.168.31.71:2380,etcd-2=//192.168.31.72:2380,etcd-3=//192.168.31.73:2380" ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster" ETCD_INITIAL_CLUSTER_STATE="new" EOF
- ETCD_NAME:節點名稱,集群中唯一
- ETCD_DATA_DIR:數據目錄
- ETCD_LISTEN_PEER_URLS:集群通訊監聽地址
- ETCD_LISTEN_CLIENT_URLS:客戶端訪問監聽地址
- ETCD_INITIAL_ADVERTISE_PEER_URLS:集群通告地址
- ETCD_ADVERTISE_CLIENT_URLS:客戶端通告地址
- ETCD_INITIAL_CLUSTER:集群節點地址
- ETCD_INITIAL_CLUSTER_TOKEN:集群Token
- ETCD_INITIAL_CLUSTER_STATE:加入集群的當前狀態,new是新集群,existing表示加入已有集群
3. systemd管理etcd
cat > /usr/lib/systemd/system/etcd.service << EOF [Unit] Description=Etcd Server After=network.target After=network-online.target Wants=network-online.target [Service] Type=notify EnvironmentFile=/opt/etcd/cfg/etcd.conf ExecStart=/opt/etcd/bin/etcd \ --cert-file=/opt/etcd/ssl/server.pem \ --key-file=/opt/etcd/ssl/server-key.pem \ --peer-cert-file=/opt/etcd/ssl/server.pem \ --peer-key-file=/opt/etcd/ssl/server-key.pem \ --trusted-ca-file=/opt/etcd/ssl/ca.pem \ --peer-trusted-ca-file=/opt/etcd/ssl/ca.pem \ --logger=zap Restart=on-failure LimitNOFILE=65536 [Install] WantedBy=multi-user.target EOF
4. 拷貝剛才生成的證書
把剛才生成的證書拷貝到配置文件中的路徑:
cp ~/TLS/etcd/ca*pem ~/TLS/etcd/server*pem /opt/etcd/ssl/
5. 啟動並設置開機啟動
systemctl daemon-reload
systemctl start etcd
systemctl enable etcd
6. 將上面節點1所有生成的文件拷貝到節點2和節點3
scp -r /opt/etcd/ root@192.168.31.72:/opt/ scp /usr/lib/systemd/system/etcd.service root@192.168.31.72:/usr/lib/systemd/system/ scp -r /opt/etcd/ root@192.168.31.73:/opt/ scp /usr/lib/systemd/system/etcd.service root@192.168.31.73:/usr/lib/systemd/system/
然後在節點2和節點3分別修改etcd.conf配置文件中的節點名稱和當前伺服器IP:
vi /opt/etcd/cfg/etcd.conf #[Member] ETCD_NAME="etcd-1" # 修改此處,節點2改為etcd-2,節點3改為etcd-3 ETCD_DATA_DIR="/var/lib/etcd/default.etcd" ETCD_LISTEN_PEER_URLS="//192.168.31.71:2380" # 修改此處為當前伺服器IP ETCD_LISTEN_CLIENT_URLS="//192.168.31.71:2379" # 修改此處為當前伺服器IP #[Clustering] ETCD_INITIAL_ADVERTISE_PEER_URLS="//192.168.31.71:2380" # 修改此處為當前伺服器IP ETCD_ADVERTISE_CLIENT_URLS="//192.168.31.71:2379" # 修改此處為當前伺服器IP ETCD_INITIAL_CLUSTER="etcd-1=//192.168.31.71:2380,etcd-2=//192.168.31.72:2380,etcd-3=//192.168.31.73:2380" ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster" ETCD_INITIAL_CLUSTER_STATE="new"
最後啟動etcd並設置開機啟動,同上。
7. 查看集群狀態
ETCDCTL_API=3 /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="//192.168.31.71:2379,//192.168.31.72:2379,//192.168.31.73:2379" endpoint health https://192.168.31.71:2379 is healthy: successfully committed proposal: took = 8.154404ms https://192.168.31.73:2379 is healthy: successfully committed proposal: took = 9.044117ms https://192.168.31.72:2379 is healthy: successfully committed proposal: took = 10.000825ms
如果輸出上面資訊,就說明集群部署成功。如果有問題第一步先看日誌:/var/log/message 或 journalctl -u etcd
三、安裝Docker
下載地址://download.docker.com/linux/static/stable/x86_64/docker-19.03.9.tgz
以下在所有節點操作。這裡採用二進位安裝,用yum安裝也一樣。
3.1 解壓二進位包
tar zxvf docker-19.03.9.tgz mv docker/* /usr/bin
3.2 systemd管理docker
cat > /usr/lib/systemd/system/docker.service << EOF [Unit] Description=Docker Application Container Engine Documentation=https://docs.docker.com After=network-online.target firewalld.service Wants=network-online.target [Service] Type=notify ExecStart=/usr/bin/dockerd ExecReload=/bin/kill -s HUP $MAINPID LimitNOFILE=infinity LimitNPROC=infinity LimitCORE=infinity TimeoutStartSec=0 Delegate=yes KillMode=process Restart=on-failure StartLimitBurst=3 StartLimitInterval=60s [Install] WantedBy=multi-user.target EOF
3.3 創建配置文件
mkdir /etc/docker cat > /etc/docker/daemon.json << EOF { "registry-mirrors": ["//b9pmyelo.mirror.aliyuncs.com"] } EOF
- registry-mirrors 阿里雲鏡像加速器
3.4 啟動並設置開機啟動
systemctl daemon-reload
systemctl start docker
systemctl enable docker
四、部署Master Node
如果你在學習中遇到問題或者文檔有誤可聯繫阿良~ 微信: init1024
4.1 生成kube-apiserver證書
1. 自簽證書頒發機構(CA)
cat > ca-config.json << EOF { "signing": { "default": { "expiry": "87600h" }, "profiles": { "kubernetes": { "expiry": "87600h", "usages": [ "signing", "key encipherment", "server auth", "client auth" ] } } } } EOF cat > ca-csr.json << EOF { "CN": "kubernetes", "key": { "algo": "rsa", "size": 2048 }, "names": [ { "C": "CN", "L": "Beijing", "ST": "Beijing", "O": "k8s", "OU": "System" } ] } EOF
生成證書:
cfssl gencert -initca ca-csr.json | cfssljson -bare ca - ls *pem ca-key.pem ca.pem
2. 使用自簽CA簽發kube-apiserver HTTPS證書
創建證書申請文件:
cd TLS/k8s cat > server-csr.json << EOF { "CN": "kubernetes", "hosts": [ "10.0.0.1", "127.0.0.1", "192.168.31.71", "192.168.31.72", "192.168.31.73", "192.168.31.74", "192.168.31.81", "192.168.31.82", "192.168.31.88", "kubernetes", "kubernetes.default", "kubernetes.default.svc", "kubernetes.default.svc.cluster", "kubernetes.default.svc.cluster.local" ], "key": { "algo": "rsa", "size": 2048 }, "names": [ { "C": "CN", "L": "BeiJing", "ST": "BeiJing", "O": "k8s", "OU": "System" } ] } EOF
註:上述文件hosts欄位中IP為所有Master/LB/VIP IP,一個都不能少!為了方便後期擴容可以多寫幾個預留的IP。
生成證書:
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes server-csr.json | cfssljson -bare server ls server*pem server-key.pem server.pem
4.2 從Github下載二進位文件
下載地址: //github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.18.md#v1183
註:打開鏈接你會發現裡面有很多包,下載一個server包就夠了,包含了Master和Worker Node二進位文件。
4.3 解壓二進位包
mkdir -p /opt/kubernetes/{bin,cfg,ssl,logs} tar zxvf kubernetes-server-linux-amd64.tar.gz cd kubernetes/server/bin cp kube-apiserver kube-scheduler kube-controller-manager /opt/kubernetes/bin cp kubectl /usr/bin/
4.4 部署kube-apiserver
1. 創建配置文件
cat > /opt/kubernetes/cfg/kube-apiserver.conf << EOF KUBE_APISERVER_OPTS="--logtostderr=false \\ --v=2 \\ --log-dir=/opt/kubernetes/logs \\ --etcd-servers=https://192.168.31.71:2379,//192.168.31.72:2379,//192.168.31.73:2379 \\ --bind-address=192.168.31.71 \\ --secure-port=6443 \\ --advertise-address=192.168.31.71 \\ --allow-privileged=true \\ --service-cluster-ip-range=10.0.0.0/24 \\ --enable-admission-plugins=NamespaceLifecycle,LimitRanger,ServiceAccount,ResourceQuota,NodeRestriction \\ --authorization-mode=RBAC,Node \\ --enable-bootstrap-token-auth=true \\ --token-auth-file=/opt/kubernetes/cfg/token.csv \\ --service-node-port-range=30000-32767 \\ --kubelet-client-certificate=/opt/kubernetes/ssl/server.pem \\ --kubelet-client-key=/opt/kubernetes/ssl/server-key.pem \\ --tls-cert-file=/opt/kubernetes/ssl/server.pem \\ --tls-private-key-file=/opt/kubernetes/ssl/server-key.pem \\ --client-ca-file=/opt/kubernetes/ssl/ca.pem \\ --service-account-key-file=/opt/kubernetes/ssl/ca-key.pem \\ --etcd-cafile=/opt/etcd/ssl/ca.pem \\ --etcd-certfile=/opt/etcd/ssl/server.pem \\ --etcd-keyfile=/opt/etcd/ssl/server-key.pem \\ --audit-log-maxage=30 \\ --audit-log-maxbackup=3 \\ --audit-log-maxsize=100 \\ --audit-log-path=/opt/kubernetes/logs/k8s-audit.log" EOF
註:上面兩個\ \ 第一個是轉義符,第二個是換行符,使用轉義符是為了使用EOF保留換行符。
- –logtostderr:啟用日誌
- —v:日誌等級
- –log-dir:日誌目錄
- –etcd-servers:etcd集群地址
- –bind-address:監聽地址
- –secure-port:https安全埠
- –advertise-address:集群通告地址
- –allow-privileged:啟用授權
- –service-cluster-ip-range:Service虛擬IP地址段
- –enable-admission-plugins:准入控制模組
- –authorization-mode:認證授權,啟用RBAC授權和節點自管理
- –enable-bootstrap-token-auth:啟用TLS bootstrap機制
- –token-auth-file:bootstrap token文件
- –service-node-port-range:Service nodeport類型默認分配埠範圍
- –kubelet-client-xxx:apiserver訪問kubelet客戶端證書
- –tls-xxx-file:apiserver https證書
- –etcd-xxxfile:連接Etcd集群證書
- –audit-log-xxx:審計日誌
2. 拷貝剛才生成的證書
把剛才生成的證書拷貝到配置文件中的路徑:
cp ~/TLS/k8s/ca*pem ~/TLS/k8s/server*pem /opt/kubernetes/ssl/
3. 啟用 TLS Bootstrapping 機制
TLS Bootstraping:Master apiserver啟用TLS認證後,Node節點kubelet和kube-proxy要與kube-apiserver進行通訊,必須使用CA簽發的有效證書才可以,當Node節點很多時,這種客戶端證書頒發需要大量工作,同樣也會增加集群擴展複雜度。為了簡化流程,Kubernetes引入了TLS bootstraping機制來自動頒發客戶端證書,kubelet會以一個低許可權用戶自動向apiserver申請證書,kubelet的證書由apiserver動態簽署。所以強烈建議在Node上使用這種方式,目前主要用於kubelet,kube-proxy還是由我們統一頒發一個證書。
TLS bootstraping 工作流程:
創建上述配置文件中token文件:
cat > /opt/kubernetes/cfg/token.csv << EOF c47ffb939f5ca36231d9e3121a252940,kubelet-bootstrap,10001,"system:node-bootstrapper" EOF
格式:token,用戶名,UID,用戶組
token也可自行生成替換:
head -c 16 /dev/urandom | od -An -t x | tr -d ' '
4. systemd管理apiserver
cat > /usr/lib/systemd/system/kube-apiserver.service << EOF [Unit] Description=Kubernetes API Server Documentation=https://github.com/kubernetes/kubernetes [Service] EnvironmentFile=/opt/kubernetes/cfg/kube-apiserver.conf ExecStart=/opt/kubernetes/bin/kube-apiserver \$KUBE_APISERVER_OPTS Restart=on-failure [Install] WantedBy=multi-user.target EOF
5. 啟動並設置開機啟動
systemctl daemon-reload systemctl start kube-apiserver systemctl enable kube-apiserver
6. 授權kubelet-bootstrap用戶允許請求證書
kubectl create clusterrolebinding kubelet-bootstrap \ --clusterrole=system:node-bootstrapper \ --user=kubelet-bootstrap
4.5 部署kube-controller-manager
1. 創建配置文件
cat > /opt/kubernetes/cfg/kube-controller-manager.conf << EOF KUBE_CONTROLLER_MANAGER_OPTS="--logtostderr=false \\ --v=2 \\ --log-dir=/opt/kubernetes/logs \\ --leader-elect=true \\ --master=127.0.0.1:8080 \\ --bind-address=127.0.0.1 \\ --allocate-node-cidrs=true \\ --cluster-cidr=10.244.0.0/16 \\ --service-cluster-ip-range=10.0.0.0/24 \\ --cluster-signing-cert-file=/opt/kubernetes/ssl/ca.pem \\ --cluster-signing-key-file=/opt/kubernetes/ssl/ca-key.pem \\ --root-ca-file=/opt/kubernetes/ssl/ca.pem \\ --service-account-private-key-file=/opt/kubernetes/ssl/ca-key.pem \\ --experimental-cluster-signing-duration=87600h0m0s" EOF
- –master:通過本地非安全本地埠8080連接apiserver。
- –leader-elect:當該組件啟動多個時,自動選舉(HA)
- –cluster-signing-cert-file/–cluster-signing-key-file:自動為kubelet頒發證書的CA,與apiserver保持一致
2. systemd管理controller-manager
cat > /usr/lib/systemd/system/kube-controller-manager.service << EOF [Unit] Description=Kubernetes Controller Manager Documentation=https://github.com/kubernetes/kubernetes [Service] EnvironmentFile=/opt/kubernetes/cfg/kube-controller-manager.conf ExecStart=/opt/kubernetes/bin/kube-controller-manager \$KUBE_CONTROLLER_MANAGER_OPTS Restart=on-failure [Install] WantedBy=multi-user.target EOF
3. 啟動並設置開機啟動
systemctl daemon-reload systemctl start kube-controller-manager systemctl enable kube-controller-manager
4.6 部署kube-scheduler
1. 創建配置文件
cat > /opt/kubernetes/cfg/kube-scheduler.conf << EOF KUBE_SCHEDULER_OPTS="--logtostderr=false \ --v=2 \ --log-dir=/opt/kubernetes/logs \ --leader-elect \ --master=127.0.0.1:8080 \ --bind-address=127.0.0.1" EOF
- –master:通過本地非安全本地埠8080連接apiserver。
- –leader-elect:當該組件啟動多個時,自動選舉(HA)
2. systemd管理scheduler
cat > /usr/lib/systemd/system/kube-scheduler.service << EOF [Unit] Description=Kubernetes Scheduler Documentation=https://github.com/kubernetes/kubernetes [Service] EnvironmentFile=/opt/kubernetes/cfg/kube-scheduler.conf ExecStart=/opt/kubernetes/bin/kube-scheduler \$KUBE_SCHEDULER_OPTS Restart=on-failure [Install] WantedBy=multi-user.target EOF
3. 啟動並設置開機啟動
systemctl daemon-reload systemctl start kube-scheduler systemctl enable kube-scheduler
4. 查看集群狀態
所有組件都已經啟動成功,通過kubectl工具查看當前集群組件狀態:
kubectl get cs NAME STATUS MESSAGE ERROR scheduler Healthy ok controller-manager Healthy ok etcd-2 Healthy {"health":"true"} etcd-1 Healthy {"health":"true"} etcd-0 Healthy {"health":"true"}
如上輸出說明Master節點組件運行正常。
五、部署Worker Node
如果你在學習中遇到問題或者文檔有誤可聯繫阿良~ 微信: init1024
下面還是在Master Node上操作,即同時作為Worker Node
5.1 創建工作目錄並拷貝二進位文件
在所有worker node創建工作目錄:
mkdir -p /opt/kubernetes/{bin,cfg,ssl,logs}
從master節點拷貝:
cd kubernetes/server/bin
cp kubelet kube-proxy /opt/kubernetes/bin # 本地拷貝
5.2 部署kubelet
1. 創建配置文件
cat > /opt/kubernetes/cfg/kubelet.conf << EOF KUBELET_OPTS="--logtostderr=false \\ --v=2 \\ --log-dir=/opt/kubernetes/logs \\ --hostname-override=k8s-master \\ --network-plugin=cni \\ --kubeconfig=/opt/kubernetes/cfg/kubelet.kubeconfig \\ --bootstrap-kubeconfig=/opt/kubernetes/cfg/bootstrap.kubeconfig \\ --config=/opt/kubernetes/cfg/kubelet-config.yml \\ --cert-dir=/opt/kubernetes/ssl \\ --pod-infra-container-image=lizhenliang/pause-amd64:3.0" EOF
- –hostname-override:顯示名稱,集群中唯一
- –network-plugin:啟用CNI
- –kubeconfig:空路徑,會自動生成,後面用於連接apiserver
- –bootstrap-kubeconfig:首次啟動向apiserver申請證書
- –config:配置參數文件
- –cert-dir:kubelet證書生成目錄
- –pod-infra-container-image:管理Pod網路容器的鏡像
2. 配置參數文件
cat > /opt/kubernetes/cfg/kubelet-config.yml << EOF kind: KubeletConfiguration apiVersion: kubelet.config.k8s.io/v1beta1 address: 0.0.0.0 port: 10250 readOnlyPort: 10255 cgroupDriver: cgroupfs clusterDNS: - 10.0.0.2 clusterDomain: cluster.local failSwapOn: false authentication: anonymous: enabled: false webhook: cacheTTL: 2m0s enabled: true x509: clientCAFile: /opt/kubernetes/ssl/ca.pem authorization: mode: Webhook webhook: cacheAuthorizedTTL: 5m0s cacheUnauthorizedTTL: 30s evictionHard: imagefs.available: 15% memory.available: 100Mi nodefs.available: 10% nodefs.inodesFree: 5% maxOpenFiles: 1000000 maxPods: 110 EOF
3. 生成bootstrap.kubeconfig文件
KUBE_APISERVER="//192.168.31.71:6443" # apiserver IP:PORT TOKEN="c47ffb939f5ca36231d9e3121a252940" # 與token.csv里保持一致 # 生成 kubelet bootstrap kubeconfig 配置文件 kubectl config set-cluster kubernetes \ --certificate-authority=/opt/kubernetes/ssl/ca.pem \ --embed-certs=true \ --server=${KUBE_APISERVER} \ --kubeconfig=bootstrap.kubeconfig kubectl config set-credentials "kubelet-bootstrap" \ --token=${TOKEN} \ --kubeconfig=bootstrap.kubeconfig kubectl config set-context default \ --cluster=kubernetes \ --user="kubelet-bootstrap" \ --kubeconfig=bootstrap.kubeconfig kubectl config use-context default --kubeconfig=bootstrap.kubeconfig
拷貝到配置文件路徑:
cp bootstrap.kubeconfig /opt/kubernetes/cfg
4. systemd管理kubelet
cat > /usr/lib/systemd/system/kubelet.service << EOF [Unit] Description=Kubernetes Kubelet After=docker.service [Service] EnvironmentFile=/opt/kubernetes/cfg/kubelet.conf ExecStart=/opt/kubernetes/bin/kubelet \$KUBELET_OPTS Restart=on-failure LimitNOFILE=65536 [Install] WantedBy=multi-user.target EOF
5. 啟動並設置開機啟動
systemctl daemon-reload
systemctl start kubelet
systemctl enable kubelet
5.3 批准kubelet證書申請並加入集群
# 查看kubelet證書請求 kubectl get csr NAME AGE SIGNERNAME REQUESTOR CONDITION node-csr-uCEGPOIiDdlLODKts8J658HrFq9CZ--K6M4G7bjhk8A 6m3s kubernetes.io/kube-apiserver-client-kubelet kubelet-bootstrap Pending # 批准申請 kubectl certificate approve node-csr-uCEGPOIiDdlLODKts8J658HrFq9CZ--K6M4G7bjhk8A # 查看節點 kubectl get node NAME STATUS ROLES AGE VERSION k8s-master NotReady <none> 7s v1.18.3
註:由於網路插件還沒有部署,節點會沒有準備就緒 NotReady
5.4 部署kube-proxy
1. 創建配置文件
cat > /opt/kubernetes/cfg/kube-proxy.conf << EOF KUBE_PROXY_OPTS="--logtostderr=false \\ --v=2 \\ --log-dir=/opt/kubernetes/logs \\ --config=/opt/kubernetes/cfg/kube-proxy-config.yml" EOF
2. 配置參數文件
cat > /opt/kubernetes/cfg/kube-proxy-config.yml << EOF kind: KubeProxyConfiguration apiVersion: kubeproxy.config.k8s.io/v1alpha1 bindAddress: 0.0.0.0 metricsBindAddress: 0.0.0.0:10249 clientConnection: kubeconfig: /opt/kubernetes/cfg/kube-proxy.kubeconfig hostnameOverride: k8s-master clusterCIDR: 10.0.0.0/24 EOF
3. 生成kube-proxy.kubeconfig文件
生成kube-proxy證書:
# 切換工作目錄 cd TLS/k8s # 創建證書請求文件 cat > kube-proxy-csr.json << EOF { "CN": "system:kube-proxy", "hosts": [], "key": { "algo": "rsa", "size": 2048 }, "names": [ { "C": "CN", "L": "BeiJing", "ST": "BeiJing", "O": "k8s", "OU": "System" } ] } EOF # 生成證書 cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes kube-proxy-csr.json | cfssljson -bare kube-proxy ls kube-proxy*pem kube-proxy-key.pem kube-proxy.pem
生成kubeconfig文件:
KUBE_APISERVER="//192.168.31.71:6443" kubectl config set-cluster kubernetes \ --certificate-authority=/opt/kubernetes/ssl/ca.pem \ --embed-certs=true \ --server=${KUBE_APISERVER} \ --kubeconfig=kube-proxy.kubeconfig kubectl config set-credentials kube-proxy \ --client-certificate=./kube-proxy.pem \ --client-key=./kube-proxy-key.pem \ --embed-certs=true \ --kubeconfig=kube-proxy.kubeconfig kubectl config set-context default \ --cluster=kubernetes \ --user=kube-proxy \ --kubeconfig=kube-proxy.kubeconfig kubectl config use-context default --kubeconfig=kube-proxy.kubeconfig
拷貝到配置文件指定路徑:
cp kube-proxy.kubeconfig /opt/kubernetes/cfg/
4. systemd管理kube-proxy
cat > /usr/lib/systemd/system/kube-proxy.service << EOF [Unit] Description=Kubernetes Proxy After=network.target [Service] EnvironmentFile=/opt/kubernetes/cfg/kube-proxy.conf ExecStart=/opt/kubernetes/bin/kube-proxy \$KUBE_PROXY_OPTS Restart=on-failure LimitNOFILE=65536 [Install] WantedBy=multi-user.target EOF
5. 啟動並設置開機啟動
systemctl daemon-reload systemctl start kube-proxy systemctl enable kube-proxy
5.5 部署CNI網路
先準備好CNI二進位文件:
下載地址://github.com/containernetworking/plugins/releases/download/v0.8.6/cni-plugins-linux-amd64-v0.8.6.tgz
解壓二進位包並移動到默認工作目錄:
mkdir /opt/cni/bin tar zxvf cni-plugins-linux-amd64-v0.8.6.tgz -C /opt/cni/bin
部署CNI網路:
wget https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml sed -i -r "s#quay.io/coreos/flannel:.*-amd64#lizhenliang/flannel:v0.12.0-amd64#g" kube-flannel.yml
默認鏡像地址無法訪問,修改為docker hub鏡像倉庫。
kubectl apply -f kube-flannel.yml kubectl get pods -n kube-system NAME READY STATUS RESTARTS AGE kube-flannel-ds-amd64-2pc95 1/1 Running 0 72s kubectl get node NAME STATUS ROLES AGE VERSION k8s-master Ready <none> 41m v1.18.3
部署好網路插件,Node準備就緒。
5.6 授權apiserver訪問kubelet
cat > apiserver-to-kubelet-rbac.yaml << EOF apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: annotations: rbac.authorization.kubernetes.io/autoupdate: "true" labels: kubernetes.io/bootstrapping: rbac-defaults name: system:kube-apiserver-to-kubelet rules: - apiGroups: - "" resources: - nodes/proxy - nodes/stats - nodes/log - nodes/spec - nodes/metrics - pods/log verbs: - "*" --- apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRoleBinding metadata: name: system:kube-apiserver namespace: "" roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: system:kube-apiserver-to-kubelet subjects: - apiGroup: rbac.authorization.k8s.io kind: User name: kubernetes EOF kubectl apply -f apiserver-to-kubelet-rbac.yaml
5.7 新增加Worker Node
1. 拷貝已部署好的Node相關文件到新節點
在Master節點將Worker Node涉及文件拷貝到新節點192.168.31.72/73
scp /opt/kubernetes root@192.168.31.72:/opt/ scp -r /usr/lib/systemd/system/{kubelet,kube-proxy}.service root@192.168.31.72:/usr/lib/systemd/system scp -r /opt/cni/ root@192.168.31.72:/opt/ scp /opt/kubernetes/ssl/ca.pem root@192.168.31.72:/opt/kubernetes/ssl
2. 刪除kubelet證書和kubeconfig文件
rm /opt/kubernetes/cfg/kubelet.kubeconfig
rm -f /opt/kubernetes/ssl/kubelet*
註:這幾個文件是證書申請審批後自動生成的,每個Node不同,必須刪除重新生成。
3. 修改主機名
vi /opt/kubernetes/cfg/kubelet.conf --hostname-override=k8s-node1 vi /opt/kubernetes/cfg/kube-proxy-config.yml hostnameOverride: k8s-node1
4. 啟動並設置開機啟動
systemctl daemon-reload systemctl start kubelet systemctl enable kubelet systemctl start kube-proxy systemctl enable kube-proxy
5. 在Master上批准新Node kubelet證書申請
kubectl get csr NAME AGE SIGNERNAME REQUESTOR CONDITION node-csr-4zTjsaVSrhuyhIGqsefxzVoZDCNKei-aE2jyTP81Uro 89s kubernetes.io/kube-apiserver-client-kubelet kubelet-bootstrap Pending kubectl certificate approve node-csr-4zTjsaVSrhuyhIGqsefxzVoZDCNKei-aE2jyTP81Uro
6. 查看Node狀態
kubectl get node NAME STATUS ROLES AGE VERSION k8s-master Ready <none> 65m v1.18.3 k8s-node1 Ready <none> 12m v1.18.3 k8s-node2 Ready <none> 81s v1.18.3
Node2(192.168.31.73 )節點同上。記得修改主機名!
六、部署Dashboard和CoreDNS
6.1 部署Dashboard
$ wget https://raw.githubusercontent.com/kubernetes/dashboard/v2.0.0-beta8/aio/deploy/recommended.yaml
默認Dashboard只能集群內部訪問,修改Service為NodePort類型,暴露到外部:
vi recommended.yaml kind: Service apiVersion: v1 metadata: labels: k8s-app: kubernetes-dashboard name: kubernetes-dashboard namespace: kubernetes-dashboard spec: ports: - port: 443 targetPort: 8443 nodePort: 30001 type: NodePort selector: k8s-app: kubernetes-dashboard kubectl apply -f recommended.yaml
kubectl get pods,svc -n kubernetes-dashboard NAME READY STATUS RESTARTS AGE pod/dashboard-metrics-scraper-694557449d-z8gfb 1/1 Running 0 2m18s pod/kubernetes-dashboard-9774cc786-q2gsx 1/1 Running 0 2m19s NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE service/dashboard-metrics-scraper ClusterIP 10.0.0.141 <none> 8000/TCP 2m19s service/kubernetes-dashboard NodePort 10.0.0.239 <none> 443:30001/TCP 2m19s
訪問地址://NodeIP:30001
創建service account並綁定默認cluster-admin管理員集群角色:
kubectl create serviceaccount dashboard-admin -n kube-system kubectl create clusterrolebinding dashboard-admin --clusterrole=cluster-admin --serviceaccount=kube-system:dashboard-admin kubectl describe secrets -n kube-system $(kubectl -n kube-system get secret | awk '/dashboard-admin/{print $1}')
使用輸出的token登錄Dashboard。
6.2 部署CoreDNS
CoreDNS用於集群內部Service名稱解析。
kubectl apply -f coredns.yaml kubectl get pods -n kube-system NAME READY STATUS RESTARTS AGE coredns-5ffbfd976d-j6shb 1/1 Running 0 32s kube-flannel-ds-amd64-2pc95 1/1 Running 0 38m kube-flannel-ds-amd64-7qhdx 1/1 Running 0 15m kube-flannel-ds-amd64-99cr8 1/1 Running 0 26m
DNS解析測試:
kubectl run -it --rm dns-test --image=busybox:1.28.4 sh If you don't see a command prompt, try pressing enter. / # nslookup kubernetes Server: 10.0.0.2 Address 1: 10.0.0.2 kube-dns.kube-system.svc.cluster.local Name: kubernetes Address 1: 10.0.0.1 kubernetes.default.svc.cluster.local
解析沒問題。
七、高可用架構(擴容多Master架構)
Kubernetes作為容器集群系統,通過健康檢查+重啟策略實現了Pod故障自我修復能力,通過調度演算法實現將Pod分散式部署,並保持預期副本數,根據Node失效狀態自動在其他Node拉起Pod,實現了應用層的高可用性。
針對Kubernetes集群,高可用性還應包含以下兩個層面的考慮:Etcd資料庫的高可用性和Kubernetes Master組件的高可用性。 而Etcd我們已經採用3個節點組建集群實現高可用,本節將對Master節點高可用進行說明和實施。
Master節點扮演著總控中心的角色,通過不斷與工作節點上的Kubelet和kube-proxy進行通訊來維護整個集群的健康工作狀態。如果Master節點故障,將無法使用kubectl工具或者API做任何集群管理。
Master節點主要有三個服務kube-apiserver、kube-controller-manager和kube-scheduler,其中kube-controller-manager和kube-scheduler組件自身通過選擇機制已經實現了高可用,所以Master高可用主要針對kube-apiserver組件,而該組件是以HTTP API提供服務,因此對他高可用與Web伺服器類似,增加負載均衡器對其負載均衡即可,並且可水平擴容。
多Master架構圖:
7.1 安裝Docker
同上,不再贅述。
7.2 部署Master2 Node(192.168.31.74)
Master2 與已部署的Master1所有操作一致。所以我們只需將Master1所有K8s文件拷貝過來,再修改下伺服器IP和主機名啟動即可。
1. 創建etcd證書目錄
在Master2創建etcd證書目錄:
mkdir -p /opt/etcd/ssl
2. 拷貝文件(Master1操作)
拷貝Master1上所有K8s文件和etcd證書到Master2:
scp -r /opt/kubernetes root@192.168.31.74:/opt scp -r /opt/cni/ root@192.168.31.74:/opt scp -r /opt/etcd/ssl root@192.168.31.74:/opt/etcd scp /usr/lib/systemd/system/kube* root@192.168.31.74:/usr/lib/systemd/system scp /usr/bin/kubectl root@192.168.31.74:/usr/bin
3. 刪除證書文件
刪除kubelet證書和kubeconfig文件:
rm -f /opt/kubernetes/cfg/kubelet.kubeconfig
rm -f /opt/kubernetes/ssl/kubelet*
4. 修改配置文件IP和主機名
修改apiserver、kubelet和kube-proxy配置文件為本地IP:
vi /opt/kubernetes/cfg/kube-apiserver.conf ... --bind-address=192.168.31.74 \ --advertise-address=192.168.31.74 \ ... vi /opt/kubernetes/cfg/kubelet.conf --hostname-override=k8s-master2 vi /opt/kubernetes/cfg/kube-proxy-config.yml hostnameOverride: k8s-master2
5. 啟動設置開機啟動
systemctl daemon-reload systemctl start kube-apiserver systemctl start kube-controller-manager systemctl start kube-scheduler systemctl start kubelet systemctl start kube-proxy systemctl enable kube-apiserver systemctl enable kube-controller-manager systemctl enable kube-scheduler systemctl enable kubelet systemctl enable kube-proxy
6. 查看集群狀態
kubectl get cs NAME STATUS MESSAGE ERROR scheduler Healthy ok controller-manager Healthy ok etcd-1 Healthy {"health":"true"} etcd-2 Healthy {"health":"true"} etcd-0 Healthy {"health":"true"}
7. 批准kubelet證書申請
kubectl get csr NAME AGE SIGNERNAME REQUESTOR CONDITION node-csr-JYNknakEa_YpHz797oKaN-ZTk43nD51Zc9CJkBLcASU 85m kubernetes.io/kube-apiserver-client-kubelet kubelet-bootstrap Pending kubectl certificate approve node-csr-JYNknakEa_YpHz797oKaN-ZTk43nD51Zc9CJkBLcASU kubectl get node NAME STATUS ROLES AGE VERSION k8s-master Ready <none> 34h v1.18.3 k8s-master2 Ready <none> 83m v1.18.3 k8s-node1 Ready <none> 33h v1.18.3 k8s-node2 Ready <none> 33h v1.18.3
如果你在學習中遇到問題或者文檔有誤可聯繫阿良~ 微信: init1024
7.3 部署Nginx負載均衡器
kube-apiserver高可用架構圖:
- Nginx是一個主流Web服務和反向代理伺服器,這裡用四層實現對apiserver實現負載均衡。
- Keepalived是一個主流高可用軟體,基於VIP綁定實現伺服器雙機熱備,在上述拓撲中,Keepalived主要根據Nginx運行狀態判斷是否需要故障轉移(偏移VIP),例如當Nginx主節點掛掉,VIP會自動綁定在Nginx備節點,從而保證VIP一直可用,實現Nginx高可用。
1. 安裝軟體包(主/備)
yum install epel-release -y
yum install nginx keepalived -y
2. Nginx配置文件(主/備一樣)
cat > /etc/nginx/nginx.conf << "EOF" user nginx; worker_processes auto; error_log /var/log/nginx/error.log; pid /run/nginx.pid; include /usr/share/nginx/modules/*.conf; events { worker_connections 1024; } # 四層負載均衡,為兩台Master apiserver組件提供負載均衡 stream { log_format main '$remote_addr $upstream_addr - [$time_local] $status $upstream_bytes_sent'; access_log /var/log/nginx/k8s-access.log main; upstream k8s-apiserver { server 192.168.31.71:6443; # Master1 APISERVER IP:PORT server 192.168.31.74:6443; # Master2 APISERVER IP:PORT } server { listen 6443; proxy_pass k8s-apiserver; } } http { log_format main '$remote_addr - $remote_user [$time_local] "$request" ' '$status $body_bytes_sent "$http_referer" ' '"$http_user_agent" "$http_x_forwarded_for"'; access_log /var/log/nginx/access.log main; sendfile on; tcp_nopush on; tcp_nodelay on; keepalive_timeout 65; types_hash_max_size 2048; include /etc/nginx/mime.types; default_type application/octet-stream; server { listen 80 default_server; server_name _; location / { } } } EOF
3. keepalived配置文件(Nginx Master)
cat > /etc/keepalived/keepalived.conf << EOF global_defs { notification_email { [email protected] [email protected] [email protected] } notification_email_from [email protected] smtp_server 127.0.0.1 smtp_connect_timeout 30 router_id NGINX_MASTER } vrrp_script check_nginx { script "/etc/keepalived/check_nginx.sh" } vrrp_instance VI_1 { state MASTER interface ens33 virtual_router_id 51 # VRRP 路由 ID實例,每個實例是唯一的 priority 100 # 優先順序,備伺服器設置 90 advert_int 1 # 指定VRRP 心跳包通告間隔時間,默認1秒 authentication { auth_type PASS auth_pass 1111 } # 虛擬IP virtual_ipaddress { 192.168.31.88/24 } track_script { check_nginx } } EOF
-
vrrp_script:指定檢查nginx工作狀態腳本(根據nginx狀態判斷是否故障轉移)
-
virtual_ipaddress:虛擬IP(VIP)
檢查nginx狀態腳本:
cat > /etc/keepalived/check_nginx.sh << "EOF" #!/bin/bash count=$(ps -ef |grep nginx |egrep -cv "grep|$$") if [ "$count" -eq 0 ];then exit 1 else exit 0 fi EOF chmod +x /etc/keepalived/check_nginx.sh
4. keepalived配置文件(Nginx Backup)
cat > /etc/keepalived/keepalived.conf << EOF global_defs { notification_email { [email protected] [email protected] [email protected] } notification_email_from [email protected] smtp_server 127.0.0.1 smtp_connect_timeout 30 router_id NGINX_BACKUP } vrrp_script check_nginx { script "/etc/keepalived/check_nginx.sh" } vrrp_instance VI_1 { state BACKUP interface ens33 virtual_router_id 51 # VRRP 路由 ID實例,每個實例是唯一的 priority 90 advert_int 1 authentication { auth_type PASS auth_pass 1111 } virtual_ipaddress { 192.168.31.88/24 } track_script { check_nginx } } EOF
上述配置文件中檢查nginx運行狀態腳本:
cat > /etc/keepalived/check_nginx.sh << "EOF" #!/bin/bash count=$(ps -ef |grep nginx |egrep -cv "grep|$$") if [ "$count" -eq 0 ];then exit 1 else exit 0 fi EOF chmod +x /etc/keepalived/check_nginx.sh
註:keepalived根據腳本返回狀態碼(0為工作正常,非0不正常)判斷是否故障轉移。
5. 啟動並設置開機啟動
systemctl daemon-reload
systemctl start nginx
systemctl start keepalived
systemctl enable nginx
systemctl enable keepalived
6. 查看keepalived工作狀態
ip a 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever inet6 ::1/128 scope host valid_lft forever preferred_lft forever 2: ens33: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000 link/ether 00:0c:29:04:f7:2c brd ff:ff:ff:ff:ff:ff inet 192.168.31.80/24 brd 192.168.31.255 scope global noprefixroute ens33 valid_lft forever preferred_lft forever inet 192.168.31.88/24 scope global secondary ens33 valid_lft forever preferred_lft forever inet6 fe80::20c:29ff:fe04:f72c/64 scope link valid_lft forever preferred_lft forever
可以看到,在ens33網卡綁定了192.168.31.88 虛擬IP,說明工作正常。
7. Nginx+Keepalived高可用測試
關閉主節點Nginx,測試VIP是否漂移到備節點伺服器。
在Nginx Master執行 pkill nginx
在Nginx Backup,ip addr命令查看已成功綁定VIP。
8. 訪問負載均衡器測試
找K8s集群中任意一個節點,使用curl查看K8s版本測試,使用VIP訪問:
curl -k https://192.168.31.88:6443/version { "major": "1", "minor": "18", "gitVersion": "v1.18.3", "gitCommit": "2e7996e3e2712684bc73f0dec0200d64eec7fe40", "gitTreeState": "clean", "buildDate": "2020-05-20T12:43:34Z", "goVersion": "go1.13.9", "compiler": "gc", "platform": "linux/amd64" }
可以正確獲取到K8s版本資訊,說明負載均衡器搭建正常。該請求數據流程:curl -> vip(nginx) -> apiserver
通過查看Nginx日誌也可以看到轉發apiserver IP:
tail /var/log/nginx/k8s-access.log -f 192.168.31.81 192.168.31.71:6443 - [30/May/2020:11:15:10 +0800] 200 422 192.168.31.81 192.168.31.74:6443 - [30/May/2020:11:15:26 +0800] 200 422
到此還沒結束,還有下面最關鍵的一步。
7.4 修改所有Worker Node連接LB VIP
試想下,雖然我們增加了Master2和負載均衡器,但是我們是從單Master架構擴容的,也就是說目前所有的Node組件連接都還是Master1,如果不改為連接VIP走負載均衡器,那麼Master還是單點故障。
因此接下來就是要改所有Node組件配置文件,由原來192.168.31.71修改為192.168.31.88(VIP):
角色 | IP |
---|---|
k8s-master1 | 192.168.31.71 |
k8s-master2 | 192.168.31.74 |
k8s-node1 | 192.168.31.72 |
k8s-node2 | 192.168.31.73 |
也就是通過kubectl get node命令查看到的節點。
在上述所有Worker Node執行:
sed -i 's#192.168.31.71:6443#192.168.31.88:6443#' /opt/kubernetes/cfg/* systemctl restart kubelet systemctl restart kube-proxy
檢查節點狀態:
kubectl get node NAME STATUS ROLES AGE VERSION k8s-master Ready <none> 34h v1.18.3 k8s-master2 Ready <none> 101m v1.18.3 k8s-node1 Ready <none> 33h v1.18.3 k8s-node2 Ready <none> 33h v1.18.3
至此,一套完整的 Kubernetes 高可用集群就部署完成了!
PS:如果你是在公有雲上,一般都不支援keepalived,那麼你可以直接用它們的負載均衡器產品(內網就行,還免費~),架構與上面一樣,直接負載均衡多台Master kube-apiserver即可!