使用深度學習演算法 DQN 來玩 flappy bird 無敵了!

//www.bilibili.com/video/BV1xf4y1174A/

使用深度學習演算法 DQN 來玩 flappy bird

安裝依賴

pip install parl == 1.3.1

pip install pygame

pip install paddlepaddle

模擬環境 PLE 庫

(PyGame-Learning-Environment)[//github.com/ntasfi/PyGame-Learning-Environment]

模型簡介

使用了 百度 PARL 深度學習庫直接調用 DQN 演算法

由於遊戲的 state 僅有 8 維,所以模型網路僅使用了 2 個全連接層

收斂情況

在訓練了 1000 個 episode 以後可以明顯看出在逐步收斂

在訓練了 10000 個 episode 以後,測試中基本可以保持一直進行下去,所以不得不限制到達一定分數就終止遊戲

參數調整心得

需要保持較高的探索概率,30%-20%較佳

import parl
from parl import layers
import paddle.fluid as fluid
from parl.utils import logger
from parl.algorithms import DQN

from ple.games.flappybird import FlappyBird
from ple import PLE
from pygame.constants import K_w

import random
import collections
import numpy as np

actions = {"up": K_w}
#LEARN_FREQ = 5 # 訓練頻率,不需要每一個step都learn,攢一些新增經驗後再learn,提高效率
LEARN_FREQ = 5
#MEMORY_SIZE = 20000    # replay memory的大小,越大越佔用記憶體
MEMORY_SIZE = 20000
#MEMORY_WARMUP_SIZE = 200  # replay_memory 里需要預存一些經驗數據,再從裡面sample一個batch的經驗讓agent去learn
MEMORY_WARMUP_SIZE = 200
#BATCH_SIZE = 32   # 每次給agent learn的數據數量,從replay memory隨機里sample一批數據出來
BATCH_SIZE = 32
#GAMMA = 0.99 # reward 的衰減因子,一般取 0.9 到 0.999 不等
GAMMA = 0.999
LEARNING_RATE = 0.0001 # 學習率


class Model(parl.Model):
    def __init__(self, act_dim):
        hid1_size = 128
        hid2_size = 128

        self.fc1 = layers.fc(size=hid1_size, act='tanh')
        self.fc2 = layers.fc(size=hid2_size, act='tanh')
        self.fc3 = layers.fc(size=act_dim, act=None)

    def value(self, obs):
        # 定義網路
        # 輸入state,輸出所有action對應的Q,[Q(s,a1), Q(s,a2)]

        h1 = self.fc1(obs)
        h2 = self.fc2(h1)
        Q = self.fc3(h2)
        return Q

class Agent(parl.Agent):
    def __init__(self,
                 algorithm,
                 obs_dim,
                 act_dim,
                 e_greed=0.1,
                 e_greed_decrement=0):
        assert isinstance(obs_dim, int)
        assert isinstance(act_dim, int)
        self.obs_dim = obs_dim
        self.act_dim = act_dim
        super(Agent, self).__init__(algorithm)

        self.global_step = 0
        #self.update_target_steps = 200  # 每隔200個training steps再把model的參數複製到target_model中
        self.update_target_steps = 200

        self.e_greed = e_greed  # 有一定概率隨機選取動作,探索
        self.e_greed_decrement = e_greed_decrement  # 隨著訓練逐步收斂,探索的程度慢慢降低

    def build_program(self):
        self.pred_program = fluid.Program()
        self.learn_program = fluid.Program()

        with fluid.program_guard(self.pred_program):  # 搭建計算圖用於 預測動作,定義輸入輸出變數
            obs = layers.data(
                name='obs', shape=[self.obs_dim], dtype='float32')
            self.value = self.alg.predict(obs)

        with fluid.program_guard(self.learn_program):  # 搭建計算圖用於 更新Q網路,定義輸入輸出變數
            obs = layers.data(
                name='obs', shape=[self.obs_dim], dtype='float32')
            action = layers.data(name='act', shape=[1], dtype='int32')
            reward = layers.data(name='reward', shape=[], dtype='float32')
            next_obs = layers.data(
                name='next_obs', shape=[self.obs_dim], dtype='float32')
            terminal = layers.data(name='terminal', shape=[], dtype='bool')
            self.cost = self.alg.learn(obs, action, reward, next_obs, terminal)

    def sample(self, obs):
        sample = np.random.rand()  # 產生0~1之間的小數
        if sample < self.e_greed:
            act = np.random.randint(self.act_dim)  # 探索:每個動作都有概率被選擇
        else:
            act = self.predict(obs)  # 選擇最優動作
        self.e_greed = max(
            0.1, self.e_greed - self.e_greed_decrement)  # 隨著訓練逐步收斂,探索的程度慢慢降低
        #self.e_greed = 0.2
        return act

    def predict(self, obs):  # 選擇最優動作
        obs = np.expand_dims(obs, axis=0)
        pred_Q = self.fluid_executor.run(
            self.pred_program,
            feed={'obs': obs.astype('float32')},
            fetch_list=[self.value])[0]
        pred_Q = np.squeeze(pred_Q, axis=0)
        act = np.argmax(pred_Q)  # 選擇Q最大的下標,即對應的動作
        return act

    def learn(self, obs, act, reward, next_obs, terminal):
        # 每隔200個training steps同步一次model和target_model的參數
        if self.global_step % self.update_target_steps == 0:
            self.alg.sync_target()
        self.global_step += 1

        act = np.expand_dims(act, -1)
        feed = {
            'obs': obs.astype('float32'),
            'act': act.astype('int32'),
            'reward': reward,
            'next_obs': next_obs.astype('float32'),
            'terminal': terminal
        }
        cost = self.fluid_executor.run(
            self.learn_program, feed=feed, fetch_list=[self.cost])[0]  # 訓練一次網路
        return cost

# replay_memory.py
class ReplayMemory(object):
    def __init__(self, max_size):
        self.buffer = collections.deque(maxlen=max_size)

    # 增加一條經驗到經驗池中
    def append(self, exp):
        self.buffer.append(exp)

    # 從經驗池中選取N條經驗出來
    def sample(self, batch_size):
        mini_batch = random.sample(self.buffer, batch_size)
        obs_batch, action_batch, reward_batch, next_obs_batch, done_batch = [], [], [], [], []

        for experience in mini_batch:
            s, a, r, s_p, done = experience
            obs_batch.append(s)
            action_batch.append(a)
            reward_batch.append(r)
            next_obs_batch.append(s_p)
            done_batch.append(done)

        return np.array(obs_batch).astype('float32'), \
            np.array(action_batch).astype('float32'), np.array(reward_batch).astype('float32'),\
            np.array(next_obs_batch).astype('float32'), np.array(done_batch).astype('float32')

    def __len__(self):
        return len(self.buffer)

# 訓練一個episode
def run_episode(env, agent, rpm):
    total_reward = 0

    env.init()
    step = 0
    while True:
        # 第一幀為黑屏,不操作
        if (step == 0):
            reward = env.act(None)
            done = False

        else:
            obs = list(env.getGameState().values())
            action = agent.sample(obs)  # 取樣動作,所有動作都有概率被嘗試到
            # 神經網路輸出轉化為實際動作
            if action == 1:
                act = actions["up"]
            else:
                act = None

            reward = env.act(act)
            done = env.game_over()
            next_obs = list(env.getGameState().values())

            rpm.append((obs, action, reward, next_obs, done))

            # train model
            if (len(rpm) > MEMORY_WARMUP_SIZE) and (step % LEARN_FREQ == 0):
                (batch_obs, batch_action, batch_reward, batch_next_obs,
                 batch_done) = rpm.sample(BATCH_SIZE)
                train_loss = agent.learn(batch_obs, batch_action, batch_reward,
                                         batch_next_obs,
                                         batch_done)  # s,a,r,s',done

            total_reward += reward

        if done:
            print(step)
            env.reset_game() # 重置遊戲
            break

        step += 1

    return total_reward


# 評估 agent, 跑 5 個episode,總reward求平均
def evaluate(env, agent):
    eval_reward = []
    for i in range(5):
        env.init()
        episode_reward = 0
        step = 0
        while True:
            # 第一幀為黑屏,不操作
            if (step == 0):
                reward = env.act(None)
                done = False

            else:
                obs = list(env.getGameState().values())
                action = agent.predict(obs)  # 預測動作,只選最優動作

                # 神經網路輸出轉化為實際動作
                if action == 1:
                    act = actions["up"]
                else:
                    act = None

                reward = env.act(act)
                done = env.game_over()

                episode_reward += reward

            if (step == 5000):
                print(step)
                break

            if done:
                print(step)
                env.reset_game()  # 重置遊戲
                break

            step += 1

        eval_reward.append(episode_reward)
    return np.mean(eval_reward)


# 創建環境
game = FlappyBird()
env_1 = PLE(game, fps=30, display_screen=False)
env_2 = PLE(game, fps=30, display_screen=False)
obs_dim = len(env_1.getGameState())
act_dim = 2
logger.info('obs_dim {}, act_dim {}'.format(obs_dim, act_dim))

# 創建經驗池
rpm = ReplayMemory(MEMORY_SIZE)  # DQN的經驗回放池



# 根據parl框架構建agent
model = Model(act_dim=act_dim)
algorithm = DQN(model, act_dim = act_dim, gamma=GAMMA, lr=LEARNING_RATE)
agent = Agent(
    algorithm,
    obs_dim = obs_dim,
    act_dim = act_dim,
    e_greed = 0.2,
    e_greed_decrement = 1e-6

)


# 載入模型
save_path = 'bird_dqn_v3_7.ckpt'
agent.restore(save_path)

# 先往經驗池裡存一些數據,避免最開始訓練的時候樣本豐富度不夠
while len(rpm) < MEMORY_WARMUP_SIZE:
    run_episode(env_1, agent, rpm)

max_episode = 2000

# 開始訓練
episode = 0
while episode < max_episode:  # 訓練max_episode個回合,test部分不計算入episode數量
    # train part
    for i in range(0, 100):
        total_reward = run_episode(env_1, agent, rpm)
        episode += 1

    # test part
    eval_reward = evaluate(env_2, agent)  # render=True 查看顯示效果
    logger.info('episode:{}    e_greed:{}   test_reward:{}'.format(
        episode, agent.e_greed, eval_reward))
    # 保存模型
    ckpt = 'bird_dqn_v3_dir/steps_{}.ckpt'.format(episode)
    agent.save(ckpt)

# 訓練結束,保存模型
save_path = './bird_dqn_v3_8.ckpt'
agent.save(save_path)