Python爬取京東筆記型電腦電腦,來看看那個牌子最棒
- 2019 年 10 月 7 日
- 筆記
一、前言
二、知識要求三、過程分析1.觀察主頁面和每個電腦介面的網址2.尋找每個電腦的id3.找到存放電腦的價格和評論數的資訊4.爬取資訊的思路四、urllib模組爬取京東筆記型電腦電腦的數據、並對其做一個可視化實戰五、可視化結果1.運行結果2.可視化結果
//
本文作者
王豪:行路難,多歧路,今安在,埋頭苦改bug會有時,直到bug改完才吃飯。
//
閱讀文本大概需要 5 分鐘。
一、前言
作為一個程式設計師,筆記型電腦電腦是必不可少的,我這裡對京東上的前2頁的筆記型電腦的好評論數,價格,店鋪等資訊進行爬取,並做一個可視化,根據可視化的圖,大家可以清晰的做出預測,方便大家購買划算的電腦。當然,我這裡前2頁的數據是遠遠不夠的,如果大家想要預測的更精準一些,可以改一下數字,獲取更多頁面的數據,這樣,預測結果會更精確。
二、知識要求
三、過程分析
1.觀察主頁面和每個電腦介面的網址

(1)觀察具體介面的網址,我們可以猜測,具體每個介面都有一個id,通過構造網址https://item.jd.com/【id】.html
,就可以得到具體每個介面的網址。 (2)觀察主介面的網址,我們發現page=
的屬性值就是具體的頁碼數,通過構造page的值,我們可以實現自動翻頁爬取資訊。對主介面網址一些不必要的資訊剔除,最後得到主介面翻頁的網址規律https://list.jd.com/list.html?cat=670,671,672&page=【頁碼數】
同過以上的分析,我們可以看見,獲取資訊的關鍵就是每個電腦的具體id代號,接下來,我們的任務就是要找到每個電腦的id。
2.尋找每個電腦的id
(1)首先,看看網頁源程式碼中是否會有每個電腦的id

在這裡插入圖片描述

我們再進入到剛剛搜索的哪個電腦名稱的具體介面,發現,確實是他的id

(3)根據id附件的一些屬性值,唯一確定所有電腦id 根據class="gl-i-wrap j-sku-item"
屬性值定位,發現,唯一確定60個id,數了一下介面上的電腦,一頁確實是60個電腦,所以,電腦的id獲取到了。

(4)同理,根據<div class="p-name">
屬性值獲取具體每個電腦的網址和電腦名,這樣我們連具體每個電腦的網址都不用構造了,直接可以獲取。
3.找到存放電腦的價格和評論數的資訊
(1)通過到網頁源程式碼中去找,發現完全找不到,所以,我猜測這些資訊隱藏在js包中。 (2)打開fiddler
抓包工具,進行抓包分析。


可以看見,這些資訊確實是在js包裡面,複製該js包的網址,然後分析。 (3)分析有如下結論:

這裡,我也抓到了存放店鋪的js包,但是,這個js包的地址每次有一部分是隨機生成的,所以,獲取不到每台的電腦的店鋪名。但是,我有每台電腦的具體網址,而該介面裡面有該電腦的店鋪,所以,我可以訪問每台電腦的具體介面去獲取到店鋪消息。
4.爬取資訊的思路
(1)先爬每頁的資訊 (2)再爬每頁中每台電腦的價格、電腦名和評論數,以及每台電腦的網址 (3)爬取每台電腦的頁面,獲取店鋪資訊 (4)獲取完所有頁面資訊後,做一個可視化
四、urllib模組爬取京東筆記型電腦電腦的數據、並對其做一個可視化實戰
爬蟲文件:(建議大家邊看邊敲一遍,更加有利於學習)
# -*- coding: utf-8 -*- import random import urllib.request import re import time from lxml import etree from pyecharts import Bar from pyecharts import Pie headers = [ "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; AcooBrowser; .NET CLR 1.1.4322; .NET CLR 2.0.50727)", "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0; Acoo Browser; SLCC1; .NET CLR 2.0.50727; Media Center PC 5.0; .NET CLR 3.0.04506)", "Mozilla/4.0 (compatible; MSIE 7.0; AOL 9.5; AOLBuild 4337.35; Windows NT 5.1; .NET CLR 1.1.4322; .NET CLR 2.0.50727)", "Mozilla/5.0 (Windows; U; MSIE 9.0; Windows NT 9.0; en-US)", "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Win64; x64; Trident/5.0; .NET CLR 3.5.30729; .NET CLR 3.0.30729; .NET CLR 2.0.50727; Media Center PC 6.0)", "Mozilla/5.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0; WOW64; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; .NET CLR 1.0.3705; .NET CLR 1.1.4322)", "Mozilla/4.0 (compatible; MSIE 7.0b; Windows NT 5.2; .NET CLR 1.1.4322; .NET CLR 2.0.50727; InfoPath.2; .NET CLR 3.0.04506.30)", "Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN) AppleWebKit/523.15 (KHTML, like Gecko, Safari/419.3) Arora/0.3 (Change: 287 c9dfb30)", "Mozilla/5.0 (X11; U; Linux; en-US) AppleWebKit/527+ (KHTML, like Gecko, Safari/419.3) Arora/0.6", "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.2pre) Gecko/20070215 K-Ninja/2.1.1", "Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN; rv:1.9) Gecko/20080705 Firefox/3.0 Kapiko/3.0", "Mozilla/5.0 (X11; Linux i686; U;) Gecko/20070322 Kazehakase/0.4.5", "Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.8) Gecko Fedora/1.9.0.8-1.fc10 Kazehakase/0.5.6", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.56 Safari/535.11", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_3) AppleWebKit/535.20 (KHTML, like Gecko) Chrome/19.0.1036.7 Safari/535.20", "Opera/9.80 (Macintosh; Intel Mac OS X 10.6.8; U; fr) Presto/2.9.168 Version/11.52", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.11 (KHTML, like Gecko) Chrome/20.0.1132.11 TaoBrowser/2.0 Safari/536.11", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.71 Safari/537.1 LBBROWSER", "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E; LBBROWSER)", "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; QQDownload 732; .NET4.0C; .NET4.0E; LBBROWSER)", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.84 Safari/535.11 LBBROWSER", "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E)", "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E; QQBrowser/7.0.3698.400)", "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; QQDownload 732; .NET4.0C; .NET4.0E)", "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Trident/4.0; SV1; QQDownload 732; .NET4.0C; .NET4.0E; 360SE)", "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; QQDownload 732; .NET4.0C; .NET4.0E)", "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E)", "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.89 Safari/537.1", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.89 Safari/537.1", "Mozilla/5.0 (iPad; U; CPU OS 4_2_1 like Mac OS X; zh-cn) AppleWebKit/533.17.9 (KHTML, like Gecko) Version/5.0.2 Mobile/8C148 Safari/6533.18.5", "Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:2.0b13pre) Gecko/20110307 Firefox/4.0b13pre", "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:16.0) Gecko/20100101 Firefox/16.0", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11", "Mozilla/5.0 (X11; U; Linux x86_64; zh-CN; rv:1.9.2.10) Gecko/20100922 Ubuntu/10.10 (maverick) Firefox/3.6.10" ] def main(): # 用來存放所有的電腦數據 allNames = [] allCommentNums = {} allPrices = {} allShops = {} # 爬取前2頁的所有筆記型電腦電腦 for i in range(0, 1): # 每頁地址規律:https://list.jd.com/list.html?cat=670,671,672&page=【頁碼】 print('正在爬取第'+str(i+1)+'頁的資訊...') url = 'https://list.jd.com/list.html?cat=670,671,672&page='+str(i+1) get_page_data(url, allNames, allCommentNums, allPrices, allShops) # 以上為獲取資訊,以下為數據的可視化 names = allNames commentNums = [] for name in names: if allCommentNums[name] == None: commentNums.append(0) else: commentNums.append(eval(allCommentNums[name])) prices = [] for name in names: if allPrices[name] == None: prices.append(0) else: prices.append(eval(allPrices[name])) shops = [] for name in names: if allShops[name] != None: shops.append(allShops[name]) for i in range(0, len(names)): print(names[i]) print(commentNums[i]) print(prices[i]) print(shops[i]) # 將其評論數進行條形統計圖可視化 tiaoxing(names, prices) # 將其店鋪進行餅圖可視化 # 先需要統計每個店鋪的個數 shopNames = list(set(shops)) nums = [] for i in range(0, len(shopNames)): nums.append(0) for shop in shops: for i in range(0, len(shopNames)): if shop == shopNames[i]: nums[i] += 1 bingtu(shopNames, nums) def get_page_data(url, allNames, allCommentNums, allPrices, allShops): # 爬取該頁內所有電腦的id、電腦名稱和該電腦的具體網址 response = urllib.request.Request(url) response.add_header('User-Agent', random.choice(headers)) data = urllib.request.urlopen(response, timeout=1).read().decode('utf-8', 'ignore') data = etree.HTML(data) ids = data.xpath('//a[@class="p-o-btn contrast J_contrast contrast-hide"]/@data-sku') names = data.xpath('//div[@class="p-name"]/a/em/text()') hrefs = data.xpath('//div[@class="p-name"]/a/@href') # 去掉重複的網址 print(len(hrefs)) hrefs = list(set(hrefs)) print(len(hrefs)) # 將每個電腦的網址構造完全,加上'https:' for i in range(0, len(hrefs)): hrefs[i] = 'https:'+hrefs[i] # 根據id構造存放每台電腦評論數的js包的地址 # 其網址格式為:https://club.jd.com/comment/productCommentSummaries.action?my=pinglun&referenceIds=100000323510,100002368328&callback=jQuery5043746 str = '' for id in ids: str = str + id + ',' commentJS_url = 'https://club.jd.com/comment/productCommentSummaries.action?my=pinglun&referenceIds='+str[:-1]+'&callback=jQuery5043746' # 爬取該js包,獲取每台電腦的評論數 response2 = urllib.request.Request(commentJS_url) response2.add_header('User-Agent', random.choice(headers)) data = urllib.request.urlopen(response2, timeout=1).read().decode('utf-8', 'ignore') pat = '{(.*?)}' commentStr = re.compile(pat).findall(data) # commentStr用來存放每個商品的關於評論數方面的所有資訊 comments = {} for id in ids: for str in commentStr: if id in str: pat2 = '"CommentCount":(.*?),' comments[id] = re.compile(pat2).findall(str)[0] print("ids為:", len(ids),ids) print("name為:", len(names), names) print("評論數為:", len(comments), comments) # 根據id構造存放每台電腦價格的js包的地址 # 其網址格式為:https://p.3.cn/prices/mgets?callback=jQuery1702366&type=1&skuIds=J_7512626%2CJ_44354035037%2CJ_100003302532 str = '' for i in range(0, len(ids)): if i == 0: str = str + 'J_' + ids[i] + '%' else: str = str + '2CJ_' + ids[i] + '%' priceJS_url = 'https://p.3.cn/prices/mgets?callback=jQuery1702366&type=1&skuIds=' + str[:-1] # 爬取該js包,獲取每台電腦的價格 response3 = urllib.request.Request(priceJS_url) response3.add_header('User-Agent', random.choice(headers)) data = urllib.request.urlopen(response3, timeout=1).read().decode('utf-8', 'ignore') priceStr = re.compile(pat).findall(data) # priceStr用來存放每個商品關於價格方面的資訊 prices = {} for id in ids: for str in priceStr: if id in str: pat3 = '"p":"(.*?)"' prices[id] = re.compile(pat3).findall(str)[0] print("價格為:", prices) # 爬取每個商品的店鋪,需要進入到對應的每個電腦的頁面去爬取店鋪資訊 shops = {} for id in ids: for href in hrefs: if id in href: try: response4 = urllib.request.Request(href) response4.add_header('User-Agent', random.choice(headers)) data = urllib.request.urlopen(response4, timeout=1).read().decode('gbk', 'ignore') shop = etree.HTML(data).xpath('//*[@id="crumb-wrap"]/div/div[2]/div[2]/div[1]/div/a/@title') print(shop) if shop == []: shops[id] = None else: shops[id] = shop[0] time.sleep(2) except Exception as e: print(e) # 先去掉電腦名兩邊的空格和換行符 [name.strip() for name in names] # 將數據分別添加到item中 for name in names: allNames.append(name) # 名字對應評論數的字典形式 for i in range(0, len(ids)): if comments[ids[i]] == '': allCommentNums[names[i]] = None else: allCommentNums[names[i]] = comments[ids[i]] # 名字與價格對應起來 for i in range(0, len(ids)): if prices[ids[i]] == '': allPrices[names[i]] = None else: allPrices[names[i]] = prices[ids[i]] # 名字與店鋪對應起來 for i in range(0, len(ids)): allShops[names[i]] = shops[ids[i]] def tiaoxing(names, prices): bar = Bar("筆記型電腦電腦價格圖", "X-電腦名,Y-價格") bar.add("筆記型電腦電腦", names, prices) bar.show_config() bar.render("D:\scrapy\jingdong\prices.html") def bingtu(shopNames, nums): attr = shopNames v1 = nums pie = Pie("筆記型電腦店鋪餅圖展示") pie.add("", attr, v1, is_label_show=True) pie.show_config() pie.render("D:\scrapy\jingdong\shops.html") if __name__ == '__main__': main()
五、可視化結果
1.運行結果

2.可視化結果
評論數條形統計圖:

店鋪扇形統計圖:

可以看見聯想的電腦買的最好。