凸函數及其性質

1. 定義

1.1 定義一

  • 如果對任意\(x_1\)\(x_2\)總有\(f[\alpha x_1 + (1 – \alpha )x_2] \ge \alpha f(x_1) + (1 – \alpha )f(x_2)\),其中\(\displaystyle 0 \le \alpha \le 1\),則稱\(f(x)\)上凸函數
  • 如果對任意\(x_1\)\(x_2\)\(x_1 \ne x_2\),總有\(f[\alpha x_1 + (1 – \alpha )x_2] \gt \alpha f(x_1) + (1 – \alpha )f(x_2)\),其中\(0 \lt\alpha \lt 1\),則稱\(f(x)\)嚴格上凸函數

1.2 定義二

  • 如果對任意\(x_1\)\(x_2\)總有\(f[\alpha x_1 + (1 – \alpha )x_2]\le \alpha f(x_1) + (1 – \alpha )f(x_2)\),其中\(\displaystyle 0 \le \alpha \le 1\),則稱\(f(x)\)下凸函數
  • 如果對任意\(x_1\)\(x_2\)\(x_1 \ne x_2\),總有\(f[\alpha x_1 + (1 – \alpha )x_2] \lt \alpha f(x_1) + (1 – \alpha )f(x_2)\),其中\(0 \lt\alpha \lt 1\),則稱\(f(x)\)嚴格下凸函數

2. 琴生(Jenson)不等式

  • 對於上凸函數,\(f(E[X]) \ge E[f(x)]\)\(\displaystyle \sum_{k=1}^q \lambda_k f(x_k)\le f(\sum_{k=1}^q \lambda_k x_k)\),其中\(\lambda_1,\lambda_2,\cdots,\lambda_q\)為正實數(或非負實數,後者去除無影響的\(\lambda_i = 0\)的項即為前者,故二者等價)且\(\displaystyle \sum_{k=1}^q \lambda_k = 1\);對於嚴格上凸函數,上述等號成立當且僅當\(x_1 = x_2 = \cdots = x_q\)
  • 對於下凸函數,\(f(E[X])\le E[f(x)]\)\(\displaystyle \sum_{k=1}^q \lambda_k f(x_k) \ge f(\sum_{k=1}^q \lambda_k x_k)\),其中\(\lambda_1,\lambda_2,\cdots,\lambda_q\)為正實數(或非負實數,後者去除無影響的\(\lambda_i = 0\)的項即為前者,故二者等價)且\(\displaystyle \sum_{k=1}^q \lambda_k = 1\);對於嚴格下凸函數,上述等號成立當且僅當\(x_1 = x_2 = \cdots = x_q\)

\(\downarrow\)證明過程如下\(\downarrow\)

2.1 上凸函數

證明:因為\(\lambda_i\)均為正實數,故有
  \(\displaystyle f( \sum_{k=1}^q \lambda_k x_k) = f(\lambda_1 x_1 + \sum_{k=2}^q \lambda_k {\sum_{k=2}^q \lambda_k x_k \over \sum_{k=2}^q \lambda_k}) \ge \lambda_1 f(x_1) + \sum_{k=2}^q \lambda_k \cdot f({\sum_{k=2}^q \lambda_k x_k \over \sum_{k=2}^q \lambda_k})\)
        \(\displaystyle = \lambda_1 f(x_1) + \sum_{k=2}^q \lambda_k \cdot f({\lambda_2 \over \sum_{k=2}^q \lambda_k} x_2 + {\sum_{k=3}^q \lambda_k \over \sum_{k=2}^q \lambda_k} \cdot {\sum_{k=3}^q \lambda_k x_k \over \sum_{k=3}^q \lambda_k})\)
        \(\displaystyle \ge \lambda_1 f(x_1) + \lambda_2 f(x_2) + \sum_{k=3}^q \lambda_k \cdot f({\sum_{k=3}^q \lambda_k x_k \over \sum_{k=3}^q \lambda_k})\)
        \(\displaystyle \ge \cdots \ge \sum_{k=1}^q \lambda_k f(x_k)\)

2.2 嚴格上凸函數

證明由定義可知,對於嚴格上凸函數,\(f[\alpha x_1 + (1 – \alpha )x_2] \ge \alpha f(x_1) + (1 – \alpha )f(x_2)\)等號成立時當且僅當\(x_1 = x_2\) 。而根據上文對於上凸函數對於\(\displaystyle \sum_{k=1}^q \lambda_k f(x_k)\le f(\sum_{k=1}^q \lambda_k x_k)\)不等式推導過程可知,若上凸函數為嚴格上凸函數,則第一個\(\ge\)處等號成立當且僅當:\(x_1 = {\sum_{k=2}^q \lambda_k x_k \over \sum_{k=2}^q \lambda_k}\);第二個\(\ge\)處等號成立當且僅當:\(x_2 = {\sum_{k=3}^q \lambda_k x_k \over \sum_{k=3}^q \lambda_k}\)\(\cdots\);第\(q-1\)\(\ge\)處等號成立當且僅當:\(x_{q-1} = {\sum_{k=q}^q \lambda_k x_k \over \sum_{k=q}^q \lambda_q} = x_q\)。所有等號都成立則以上條件都需滿足,對以上條件反向推導可得:\(x_q = x_{q-1}\)\(x_{q-2} = {\sum_{k=q-1}^q \lambda_k x_k \over \sum_{k=q-1}^q \lambda_k} = {\lambda_{q-1} x_{q-1} + \lambda_{q} x_q \over \lambda_{q-1} + \lambda_{q}} = x_{q-1}\)\(\cdots\)\(x_1 = x_2\)

\(\displaystyle \sum_{k=1}^q \lambda_k f(x_k)\le f(\sum_{k=1}^q \lambda_k x_k)\)等號成立當且僅當\(x_1 = x_2 = \cdots = x_q\)

2.3 下凸函數

證明:因為\(\lambda_i\)均為正實數,故有
  \(\displaystyle f( \sum_{k=1}^q \lambda_k x_k) = f(\lambda_1 x_1 + \sum_{k=2}^q \lambda_k {\sum_{k=2}^q \lambda_k x_k \over \sum_{k=2}^q \lambda_k}) \le \lambda_1 f(x_1) + \sum_{k=2}^q \lambda_k \cdot f({\sum_{k=2}^q \lambda_k x_k \over \sum_{k=2}^q \lambda_k})\)
        \(\displaystyle = \lambda_1 f(x_1) + \sum_{k=2}^q \lambda_k \cdot f({\lambda_2 \over \sum_{k=2}^q \lambda_k} x_2 + {\sum_{k=3}^q \lambda_k \over \sum_{k=2}^q \lambda_k} \cdot {\sum_{k=3}^q \lambda_k x_k \over \sum_{k=3}^q \lambda_k})\)
        \(\displaystyle \le \lambda_1 f(x_1) + \lambda_2 f(x_2) + \sum_{k=3}^q \lambda_k \cdot f({\sum_{k=3}^q \lambda_k x_k \over \sum_{k=3}^q \lambda_k})\)
        \(\displaystyle \le \cdots \le \sum_{k=1}^q \lambda_k f(x_k)\)

2.4 嚴格下凸函數

證明由定義可知,對於嚴格下凸函數,\(f[\alpha x_1 + (1 – \alpha )x_2] \le \alpha f(x_1) + (1 – \alpha )f(x_2)\)等號成立時當且僅當\(x_1 = x_2\) 。而根據上文對於下凸函數對於\(\displaystyle \sum_{k=1}^q \lambda_k f(x_k)\le f(\sum_{k=1}^q \lambda_k x_k)\)不等式推導過程可知,若下凸函數為嚴格下凸函數,則第一個\(\le\)處等號成立當且僅當:\(x_1 = {\sum_{k=2}^q \lambda_k x_k \over \sum_{k=2}^q \lambda_k}\);第二個\(\le\)處等號成立當且僅當:\(x_2 = {\sum_{k=3}^q \lambda_k x_k \over \sum_{k=3}^q \lambda_k}\)\(\cdots\);第\(q-1\)\(\le\)處等號成立當且僅當:\(x_{q-1} = {\sum_{k=q}^q \lambda_k x_k \over \sum_{k=q}^q \lambda_q} = x_q\)。所有等號都成立則以上條件都需滿足,對以上條件反向推導可得:\(x_q = x_{q-1}\)\(x_{q-2} = {\sum_{k=q-1}^q \lambda_k x_k \over \sum_{k=q-1}^q \lambda_k} = {\lambda_{q-1} x_{q-1} + \lambda_{q} x_q \over \lambda_{q-1} + \lambda_{q}} = x_{q-1}\)\(\cdots\)\(x_1 = x_2\)

\(\displaystyle \sum_{k=1}^q \lambda_k f(x_k) \ge f(\sum_{k=1}^q \lambda_k x_k)\)等號成立當且僅當\(x_1 = x_2 = \cdots = x_q\)

Tags: