CentOS 7搭建 Zookeeper 和 Kafka 集群

環境

  • CentOS 7.4
  • Zookeeper-3.6.1
  • Kafka_2.13-2.4.1
  • Kafka-manager-2.0.0.2

本次安裝的軟體全部在 /home/javateam 目錄下。

Zookeeper 集群搭建

  1. 添加三台機器的 hosts,使用 vim /etc/hosts 命令添加以下內容:
192.168.30.78 node-78
192.168.30.79 node-79
192.168.30.80 node-80
  1. 首先解壓縮:
tar -zxvf apache-zookeeper-3.6.1-bin.tar.gz

修改文件夾名稱:

mv apache-zookeeper-3.6.1-bin.tar.gz zookeeper
  1. /etc/profile 配置文件添加以下內容,並執行source /etc/profile命令使配置生效:
export ZOOKEEPER_HOME=/home/javateam/zookeeper
export PATH=$PATH:$ZOOKEEPER_HOME/bin
  1. 在上面配置文件中 dataDir 的目錄下創建一個 myid 文件,並寫入一個數值,比如0。myid 文件里存放的是伺服器的編號。
  2. 修改zookeeper配置文件。首先進入 $ZOOKEEPER_HOME/conf 目錄,複製一份 zoo_sample.cfg 並將名稱修改為 zoo.cfg:
# zookeeper伺服器心跳時間,單位為ms
tickTime=2000
# 投票選舉新leader的初始化時間
initLimit=10
# leader與follower心跳檢測最大容忍時間,響應超過 syncLimit * tickTime,leader認為follower死掉,從伺服器列表刪除follower
syncLimit=5
# 數據目錄
dataDir=/home/javateam/zookeeper/data/
# 日誌目錄
dataLogDir=/home/javateam/zookeeper/logs/
# 對外服務的埠
clientPort=2181
# 集群ip配置
server.78=node-78:2888:3888
server.79=node-79:2888:3888
server.80=node-80:2888:3888

注意: 上面配置文件中的數據目錄和日誌目錄需自行去創建對應的文件夾。這裡server後的數字,與myid文件中的id是一致的。

  1. zookeeper啟動會佔用三個埠,分別的作用是:
2181:對cline端提供服務
3888:選舉leader使用
2888:集群內機器通訊使用(Leader監聽此埠)

記得使用以下命令開啟防火牆埠,並重啟防火牆:

firewall-cmd --zone=public --add-port=2181/tcp --permanent
firewall-cmd --zone=public --add-port=3888/tcp --permanent
firewall-cmd --zone=public --add-port=2888/tcp --permanent
firewall-cmd --reload
  1. 然後用 zkServer.sh start 分別啟動三台機器上的zookeeper,啟動後用 zkServer.sh status 查看狀態,如下圖所以有一個leader兩個follower即代表成功:

WeChatfc81462212a55ba049b1afa06c9fabef.png

WeChat4d789c67638c5fc635fb2cc149d218c2.png

WeChatbfe38654fcccfcb45aba87c0fd2a4d58.png

Kafka 集群搭建

  1. 首先解壓縮:
tar -zxvf kafka_2.13-2.4.1.tgz
  1. 改文件夾名稱:
mv kafka_2.13-2.4.1.tgz kafka
  1. /etc/profile 配置文件添加以下內容,並執行source /etc/profile命令使配置生效:
export KAFKA_HOME=/home/javateam/kafka
export PATH=$PATH:$KAFKA_HOME/bin
  1. JVM級別參數調優,修改 kafka/bin/kafka-server-start.sh,添加以下內容:
# 調整堆大小,默認1G太小了
export KAFKA_HEAP_OPTS="-Xmx6G -Xms6G"
# 選用G1垃圾收集器
export KAFKA_JVM_PERFORMANCE_OPTS="-server -XX:+UseG1GC -XX:MaxGCPauseMillis=20 -XX:InitiatingHeapOccupancyPercent=35 -XX:+ExplicitGCInvokesConcurrent -Djava.awt.headless=true"
# 指定JMX暴露埠
export JMX_PORT="8999"

添加後,文件內容如下圖所示:

WeChat9d9de8b4d35d8483d8920db2bd98f524.png

  1. 作業系統級別參數調優,增加文件描述符的限制,使用 vim /etc/security/limits.conf 添加以下內容:
*  soft  nofile  100000
*  hard  nofile  100000
*  soft  nproc   65535
*  hard  nproc   65535
  1. 修改kafka的配置文件 $KAFKA_HOME/conf/server.properties,如下:
############################# Server Basics #############################

# 每一個broker在集群中的唯一標示,要求是正數。在改變IP地址,不改變broker.id的話不會影響consumers
broker.id=78

############################# Socket Server Settings #############################

# 提供給客戶端響應的地址和埠
listeners=PLAINTEXT://node-78:9092

# broker 處理消息的最大執行緒數
num.network.threads=3

# broker處理磁碟IO的執行緒數 ,數值應該大於你的硬碟數
num.io.threads=8

# socket的發送緩衝區大小
socket.send.buffer.bytes=102400

# socket的接收緩衝區,socket的調優參數SO_SNDBUFF
socket.receive.buffer.bytes=102400

# socket請求的最大數值,防止serverOOM,message.max.bytes必然要小於socket.request.max.bytes,會被topic創建時的指定參數覆蓋
socket.request.max.bytes=104857600


############################# Log Basics #############################

# kafka數據的存放地址,多個地址的話用逗號分割
log.dirs=/home/javateam/kafka/logs

# 每個topic的分區個數,若是在topic創建時候沒有指定的話會被topic創建時的指定參數覆蓋
num.partitions=3

# 每個分區的副本數
replication.factor=2

# 我們知道segment文件默認會被保留7天的時間,超時的話就會被清理,那麼清理這件事情就需要有一些執行緒來做。這裡就是用來設置恢復和清理data下數據的執行緒數量
num.recovery.threads.per.data.dir=1

############################# Internal Topic Settings  #############################
# The replication factor for the group metadata internal topics "__consumer_offsets" and "__transaction_state"
# For anything other than development testing, a value greater than 1 is recommended to ensure availability such as 3.
offsets.topic.replication.factor=1
transaction.state.log.replication.factor=1
transaction.state.log.min.isr=1

############################# Log Flush Policy #############################

# Messages are immediately written to the filesystem but by default we only fsync() to sync
# the OS cache lazily. The following configurations control the flush of data to disk.
# There are a few important trade-offs here:
#    1. Durability: Unflushed data may be lost if you are not using replication.
#    2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.
#    3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to excessive seeks.
# The settings below allow one to configure the flush policy to flush data after a period of time or
# every N messages (or both). This can be done globally and overridden on a per-topic basis.

# The number of messages to accept before forcing a flush of data to disk
#log.flush.interval.messages=10000

# The maximum amount of time a message can sit in a log before we force a flush
#log.flush.interval.ms=1000

############################# Log Retention Policy #############################

# 控制一條消息數據被保存多長時間,默認是7天
log.retention.hours=168

# 指定Broker為消息保存的總磁碟容量大小,-1代表不限制
log.retention.bytes=-1

# Broker能處理的最大消息大小,默認976KB(1000012),此處改為100MB
message.max.bytes=104857600

# 日誌文件中每個segment的大小,默認為1G
log.segment.bytes=1073741824

#上面的參數設置了每一個segment文件的大小是1G,那麼就需要有一個東西去定期檢查segment文件有沒有達到1G,多長時間去檢查一次,就需要設置一個周期性檢查文件大小的時間(單位是毫秒)。
log.retention.check.interval.ms=300000

############################# Zookeeper #############################

# 消費者集群通過連接Zookeeper來找到broker。zookeeper連接伺服器地址
zookeeper.connect=node-78:2181,node-79:2181,node-80:2181

# Timeout in ms for connecting to zookeeper
zookeeper.connection.timeout.ms=6000


############################# Group Coordinator Settings #############################

# The following configuration specifies the time, in milliseconds, that the GroupCoordinator will delay the initial consumer rebalance.
# The rebalance will be further delayed by the value of group.initial.rebalance.delay.ms as new members join the group, up to a maximum of max.poll.interval.ms.
# The default value for this is 3 seconds.
# We override this to 0 here as it makes for a better out-of-the-box experience for development and testing.
# However, in production environments the default value of 3 seconds is more suitable as this will help to avoid unnecessary, and potentially expensive, rebalances during application startup.
group.initial.rebalance.delay.ms=0


############################# Broker Settings #############################

# 不讓落後太多的副本競選Leader
unclean.leader.election.enable=false

# 關閉kafka定期對一些topic分區進行Leader重選舉
auto.leader.rebalance.enable=false
  1. 編寫kafka啟動腳本,vim startup.sh 內容如下所示:
# 進程守護模式啟動kafka
kafka-server-start.sh -daemon /home/javateam/kafka/config/server.properties
  1. 編寫kafka停止腳本,vim shutdown.sh 內容如下所示:
# 停止kafka服務
kafka-server-stop.sh
  1. 用如下命令,分別啟動kafka服務:
sh /home/javateam/kafka/startup.sh

注意:後面的路徑換成你自己腳本所在的路徑。

  1. 啟動成功後,連接zookeeper查看節點 ids 資訊:
zkCli.sh -server 127.0.0.1:2181
ls /brokers/ids

如下圖所示,代表集群搭建成功:

WeChatc5943d73fa0fd92c1a66962147af7afd.png

Kafka-manager 搭建

  1. 首先解壓縮:
unzip kafka-manager-2.0.0.2.zip
  1. 改文件夾名稱
mv kafka-manager-2.0.0.2.zip kafka-manager
  1. 修改配置文件 kafka-manager/conf/application.conf,把裡面的 kafka-manager.zkhosts 換成你自己的zookeeper 集群地址就好了,例如:kafka-manager.zkhosts="node-78:2181,node-79:2181,node-80:2181"
  2. 編寫 kafka-manager 啟動腳本,vim startup.sh 內容如下:
nohup /home/javateam/kafka-manager/bin/kafka-manager -Dhttp.port=9000 > /home/javateam/kafka-manager/nohup.out 2>&1 &
  1. 使用 sh /home/javateam/kafka-manager/startup.sh 啟動 kafka-manager,然後訪問9000埠,如下圖所示代表成功:

WeChatcf5d42bbb563a7b23864ed6755ce9c0d.png

不知道怎麼使用的話就去 google,這裡不再贅述。

Tags: