大數據分析及挖掘包含哪些技術?
- 2019 年 10 月 6 日
- 筆記
大數據分析的使用者有大數據分析專家,同時還有普通用戶。大數據分析與挖掘包含了哪些技術呢?
大數據分析技術
改進已有數據挖掘和機器學習技術;開發數據網路挖掘、特異群組挖掘、圖挖掘等新型數據挖掘技術;突破基於對象的數據連接、相似性連接等大數據融合技術;突破用戶興趣分析、網路行為分析、情感語義分析等面向領域的大數據挖掘技術。
數據挖掘
從大量的、不完全的、有雜訊的、模糊的、隨機的實際應用數據中,提取隱含在其中的、人們事先不知道的、但又是潛在有用的資訊和知識的過程。

數據挖掘涉及的技術
數據挖掘涉及的技術方法很多,有多種分類法。根據挖掘任務可分為分類或預測模型發現、數據總結、聚類、關聯規則發現、序列模式發現、依賴關係或依賴模型發現、異常和趨勢發現等等;根據挖掘對象可分為關係資料庫、面向對象資料庫、空間資料庫、時態資料庫、文本數據源、多媒體資料庫、異質資料庫、遺產資料庫以及環球網Web;根據挖掘方法分,可粗分為:機器學習方法、統計方法、神經網路方法和資料庫方法。
機器學習中,可細分為歸納學習方法(決策樹、規則歸納等)、基於範例學習、遺傳演算法等。統計方法中,可細分為:回歸分析(多元回歸、自回歸等)、判別分析(貝葉斯判別、費歇爾判別、非參數判別等)、聚類分析(系統聚類、動態聚類等)、探索性分析(主元分析法、相關分析法等)等。
神經網路方法中,可細分為:前向神經網路(BP演算法等)、自組織神經網路(自組織特徵映射、競爭學習等)等。資料庫方法主要是多維數據分析或OLAP方法,另外還有面向屬性的歸納方法。

數據挖掘主要過程
根據分析挖掘目標,從資料庫中把數據提取出來,然後經過ETL組織成適合分析挖掘演算法使用寬表,然後利用數據挖掘軟體進行挖掘。傳統的數據挖掘軟體,一般只能支援在單機上進行小規模數據處理,受此限制傳統數據分析挖掘一般會採用抽樣方式來減少數據分析規模。
數據挖掘的計算複雜度和靈活度遠遠超過前兩類需求。一是由於數據挖掘問題開放性,導致數據挖掘會涉及大量衍生變數計算,衍生變數多變導致數據預處理計算複雜性;二是很多數據挖掘演算法本身就比較複雜,計算量就很大,特別是大量機器學習演算法,都是迭代計算,需要通過多次迭代來求最優解,例如K-means聚類演算法、PageRank演算法等。
