基於PaddleHub的AI人臉偵測:不再用手打灰機(附程式碼)
項目實現:
-
用攝影機做人臉識別
-
判定頭部角度,以此來進行遊戲控制
所有程式碼和相關文件可在 GitHub 中自取:
github: planegame_head_control
效果展示請見 B 站:
一、項目背景
隨著 AI 技術的發展,越來越多的人臉技術被應用到了我們生活中的方方面面,刷臉支付、刷臉閘機通行、酒店人臉比對等場景都是人臉技術的應用 ,對人們的生活已經產生了巨大的影響。
而在這些技術當中,人臉關鍵點檢測是最重要的基石之一,它是諸如自動人臉識別、表情分析、三維人臉重建及三維動畫等其它人臉相關問題的前提和突破口。
PaddleHub 近期發布了人臉關鍵點檢測模型 face_landmark_localization,地址:
PaddleHub: face_landmark_localization
該模型轉換自 face-landmark ,支援同一張圖中的多個人臉檢測。它可以識別人臉中的 68 個關鍵點,地址:
二、依賴環境
pip install paddlehub
pip install pygame
pip install opencv-python
三、關鍵程式
- 頭部運動檢測部分程式
import cv2
import numpy as np
import paddlehub as hub
from paddlehub.common.logger import logger
import time
import math
import os
class HeadPostEstimation(object):
"""
頭部姿態識別
"""
NOD_ACTION = 1
SHAKE_ACTION = 2
def __init__(self, face_detector=None):
self.module = hub.Module(name="face_landmark_localization", face_detector_module=face_detector)
# 頭部3D關鍵點坐標
self.model_points = np.array([
[6.825897, 6.760612, 4.402142],
[1.330353, 7.122144, 6.903745],
[-1.330353, 7.122144, 6.903745],
[-6.825897, 6.760612, 4.402142],
[5.311432, 5.485328, 3.987654],
[1.789930, 5.393625, 4.413414],
[-1.789930, 5.393625, 4.413414],
[-5.311432, 5.485328, 3.987654],
[2.005628, 1.409845, 6.165652],
[-2.005628, 1.409845, 6.165652],
[2.774015, -2.080775, 5.048531],
[-2.774015, -2.080775, 5.048531],
[0.000000, -3.116408, 6.097667],
[0.000000, -7.415691, 4.070434],
[-7.308957, 0.913869, 0.000000],
[7.308957, 0.913869, 0.000000],
[0.746313,0.348381,6.263227],
[0.000000,0.000000,6.763430],
[-0.746313,0.348381,6.263227],
], dtype='float')
# 點頭動作index是0, 搖頭動作index是1
# 當連續30幀上下點頭動作幅度超過15度時,認為發生了點頭動作
# 當連續30幀上下點頭動作幅度超過45度時,認為發生了搖頭動作,由於搖頭動作較為敏感,故所需幅度更大
self._index_action = {0:'nod', 1:'shake'}
self._frame_window_size = 15
self._pose_threshold = {0: 15/180 * math.pi,
1: 45/180 * math.pi}
# 頭部3D投影點
self.reprojectsrc = np.float32([
[10.0, 10.0, 10.0],
[10.0, 10.0, -10.0],
[10.0, -10.0, -10.0],
[10.0, -10.0, 10.0],
[-10.0, 10.0, 10.0],
[-10.0, 10.0, -10.0],
[-10.0, -10.0, -10.0],
[-10.0, -10.0, 10.0]])
# 頭部3D投影點連線
self.line_pairs = [
[0, 1], [1, 2], [2, 3], [3, 0],
[4, 5], [5, 6], [6, 7], [7, 4],
[0, 4], [1, 5], [2, 6], [3, 7]
]
@property
def frame_window_size(self):
return self._frame_window_size
@frame_window_size.setter
def frame_window_size(self, value):
assert isinstance(value, int)
self._frame_window_size = value
@property
def pose_threshold(self):
return self._pose_threshold
@pose_threshold.setter
def pose_threshold(self, dict_value):
assert list(dict_value.keys()) == [0,1,2]
self._pose_threshold = dict_value
def get_face_landmark(self, image):
"""
預測人臉的68個關鍵點坐標
images(ndarray): 單張圖片的像素數據
"""
try:
# 選擇GPU運行,use_gpu=True,並且在運行整個教程程式碼之前設置CUDA_VISIBLE_DEVICES環境變數
res = self.module.keypoint_detection(images=[image], use_gpu=False)
return True, res[0]['data'][0]
except Exception as e:
logger.error("Get face landmark localization failed! Exception: %s " % e)
return False, None
def get_image_points_from_landmark(self, face_landmark):
"""
從face_landmark_localization的檢測結果抽取姿態估計需要的點坐標
"""
image_points = np.array([
face_landmark[17], face_landmark[21],
face_landmark[22], face_landmark[26],
face_landmark[36], face_landmark[39],
face_landmark[42], face_landmark[45],
face_landmark[31], face_landmark[35],
face_landmark[48], face_landmark[54],
face_landmark[57], face_landmark[8],
face_landmark[14], face_landmark[2],
face_landmark[32], face_landmark[33],
face_landmark[34],
], dtype='float')
return image_points
def get_lips_distance(self,face_landmark):
"""
從face_landmark_localization的檢測結果中查看上下嘴唇的距離
"""
lips_points = np.array([
face_landmark[52], face_landmark[58]
], dtype='float')
head_points = np.array([
face_landmark[25], face_landmark[8]
], dtype='float')
lips_distance = np.sum(np.square(lips_points[0] - lips_points[1]))
head_distance = np.sum(np.square(head_points[0] - head_points[1]))
relative_distance = lips_distance / head_distance
return relative_distance
def caculate_pose_vector(self, image_points):
"""
獲取旋轉向量和平移向量
"""
# 相機視角
center = (self.img_size[1]/2, self.img_size[0]/2) # 目前相機視角的中心點,即畫面的長/2,寬/2
focal_length = center[0] / np.tan(60/ 2 * np.pi / 180)
camera_matrix = np.array([
[focal_length, 0, center[0]],
[0, focal_length, center[1]],
[0, 0, 1]],
dtype = "float")
# 假設沒有畸變
dist_coeffs = np.zeros((4,1))
success, rotation_vector, translation_vector= cv2.solvePnP(self.model_points,
image_points,
camera_matrix,
dist_coeffs)
reprojectdst, _ = cv2.projectPoints(self.reprojectsrc, rotation_vector, translation_vector, camera_matrix, dist_coeffs)
return success, rotation_vector, translation_vector, camera_matrix, dist_coeffs, reprojectdst
def caculate_euler_angle(self, rotation_vector, translation_vector):
"""
將旋轉向量轉換為歐拉角
"""
rvec_matrix = cv2.Rodrigues(rotation_vector)[0]
proj_matrix = np.hstack((rvec_matrix, translation_vector))
euler_angles = cv2.decomposeProjectionMatrix(proj_matrix)[6]
pitch, yaw, roll = [math.radians(_) for _ in euler_angles]
return pitch, yaw, roll
def classify_pose_in_euler_angles(self, video, poses=3):
"""
根據歐拉角分類頭部姿態(點頭nod/搖頭shake)
video 表示不斷產生圖片的生成器
pose=1 表示識別點頭動作
pose=2 表示識別搖頭動作
pose=3 表示識別點頭和搖頭動作
"""
frames_euler = []
self.nod_time = self.totate_time = self.shake_time = time.time()
self.action_time = 0
index_action ={0:[self.NOD_ACTION], 1:[self.SHAKE_ACTION]}
for index, img in enumerate(video(), start=1):
self.img_size = img.shape
success, face_landmark = self.get_face_landmark(img)
for i, action in enumerate(index_action):
if i == 0:
index_action[action].append((20, int(self.img_size[0]/2 + 110)))
elif i == 1:
index_action[action].append((120, int(self.img_size[0]/2 + 110)))
if not success:
logger.info("Get face landmark localization failed! Please check your image!")
continue
image_points = self.get_image_points_from_landmark(face_landmark)
success, rotation_vector, translation_vector, camera_matrix, dist_coeffs, reprojectdst = self.caculate_pose_vector(image_points)
if not success:
logger.info("Get rotation and translation vectors failed!")
continue
# 計算嘴唇距離,如果張嘴,顯示"open"
distance = self.get_lips_distance(face_landmark)
if distance > 0.045:
cv2.putText(img, "open", (20, int(self.img_size[0] / 2 + 90)),
cv2.FONT_HERSHEY_SIMPLEX,
0.75, (0, 0, 255), thickness=2)
# 畫出投影正方體
alpha=0.3
if not hasattr(self, 'before'):
self.before = reprojectdst
else:
reprojectdst = alpha * self.before + (1-alpha)* reprojectdst
reprojectdst = tuple(map(tuple, reprojectdst.reshape(8, 2)))
for start, end in self.line_pairs:
cv2.line(img, reprojectdst[start], reprojectdst[end], (0, 0, 255))
# 計算頭部歐拉角
pitch, yaw, roll = self.caculate_euler_angle(rotation_vector, translation_vector)
cv2.putText(img, "pitch: " + "{:7.2f}".format(pitch), (20, int(self.img_size[0]/2 -10)), cv2.FONT_HERSHEY_SIMPLEX,
0.75, (0, 0, 255), thickness=2)
cv2.putText(img, "yaw: " + "{:7.2f}".format(yaw), (20, int(self.img_size[0]/2 + 30) ), cv2.FONT_HERSHEY_SIMPLEX,
0.75, (0, 0, 255), thickness=2)
cv2.putText(img, "roll: " + "{:7.2f}".format(roll), (20, int(self.img_size[0]/2 +70)), cv2.FONT_HERSHEY_SIMPLEX,
0.75, (0, 0, 255), thickness=2)
for index, action in enumerate(index_action):
cv2.putText(img, "{}".format(self._index_action[action]), index_action[action][1],
cv2.FONT_HERSHEY_SIMPLEX, 0.75, (50, 50, 50), thickness=2)
frames_euler.append([index, img, pitch, yaw, roll])
# 轉換成攝影機可顯示的格式
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
final_action = None
if len(frames_euler) > self.frame_window_size:
# 比較當前頭部動作歐拉角與過去的歐拉角,只有動作幅度幅度超過閾值,則判定發生相應的動作
# picth值用來判斷點頭動作
# yaw值用來判斷搖頭動作
current = [pitch, yaw, roll]
tmp = [abs(pitch), abs(yaw)]
max_index = tmp.index(max(tmp))
max_probability_action = index_action[max_index][0]
for start_idx, start_img, p, y, r in frames_euler[0:int(self.frame_window_size/2)]:
start = [p, y, r]
if poses & max_probability_action and abs(start[max_index]-current[max_index]) >= self.pose_threshold[max_index]:
frames_euler = []
final_action = max_index
self.action_time = time.time()
yield {self._index_action[max_index]: [(start_idx, start_img), (index, img)]}
break
else:
# 丟棄過時的影片幀
frames_euler.pop(0)
# 動作判定發生則高亮顯示0.5s
if self.action_time !=0 and time.time() - self.action_time < 0.5:
cv2.putText(img_rgb, "{}".format(self._index_action[max_index]), index_action[max_index][1],
cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 255), thickness=2)
# 本地顯示預測影片框,AIStudio項目不支援顯示影片框
cv2.imshow('Pose Estimation', img_rgb)
# 寫入預測結果
video_writer.write(img_rgb)
class MyFaceDetector(object):
"""
自定義人臉檢測器
基於PaddleHub人臉檢測模型ultra_light_fast_generic_face_detector_1mb_640,加強穩定人臉檢測框
"""
def __init__(self):
self.module = hub.Module(name="ultra_light_fast_generic_face_detector_1mb_640")
self.alpha = 0.75
self.start_flag =1
def face_detection(self,images, use_gpu=False, visualization=False):
# 使用GPU運行,use_gpu=True,並且在運行整個教程程式碼之前設置CUDA_VISIBLE_DEVICES環境變數
result = self.module.face_detection(images=images, use_gpu=use_gpu, visualization=visualization)
if not result[0]['data']:
return result
face = result[0]['data'][0]
if self.start_flag == 1:
self.left_s = result[0]['data'][0]['left']
self.right_s = result[0]['data'][0]['right']
self.top_s = result[0]['data'][0]['top']
self.bottom_s = result[0]['data'][0]['bottom']
self.start_flag=0
else:
# 加權平均上一幀和當前幀人臉檢測框位置,以穩定人臉檢測框
self.left_s = self.alpha * self.left_s + (1-self.alpha) * face['left']
self.right_s = self.alpha * self.right_s + (1-self.alpha) * face['right']
self.top_s = self.alpha * self.top_s + (1-self.alpha) * face['top']
self.bottom_s = self.alpha * self.bottom_s + (1-self.alpha) * face['bottom']
result[0]['data'][0]['left'] = self.left_s
result[0]['data'][0]['right'] = self.right_s
result[0]['data'][0]['top'] = self.top_s
result[0]['data'][0]['bottom'] = self.bottom_s
return result
# 定義人臉檢測器
face_detector = MyFaceDetector()
# 打開攝影機
capture = cv2.VideoCapture(0)
# capture = cv2.VideoCapture('./test_sample.mov')
fps = capture.get(cv2.CAP_PROP_FPS)
size = (int(capture.get(cv2.CAP_PROP_FRAME_WIDTH)),
int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)))
# 將預測結果寫成影片
video_writer = cv2.VideoWriter('result_enhancement.mp4', cv2.VideoWriter_fourcc(*'mp4v'), fps, size)
def generate_image():
while True:
# frame_rgb即影片的一幀數據
ret, frame_rgb = capture.read()
# 按q鍵即可退出
if cv2.waitKey(1) & 0xFF == ord('q'):
break
if frame_rgb is None:
break
frame_bgr = cv2.cvtColor(frame_rgb, cv2.COLOR_RGB2BGR)
yield frame_bgr
capture.release()
video_writer.release()
cv2.destroyAllWindows()
head_post = HeadPostEstimation(face_detector)
for res in head_post.classify_pose_in_euler_angles(video=generate_image, poses=HeadPostEstimation.NOD_ACTION | HeadPostEstimation.SHAKE_ACTION):
print(list(res.keys()))
四、控制方式
直接運行 main.py 即可
頭部左轉:飛機往左移動
頭部右轉:飛機往右移動
抬頭:飛機前移動
低頭:飛機向後移動
張嘴:丟炸彈!
五、說明
飛機的速度,子彈的速度都可以在參數中調節
為了演示方便,把之前遊戲中的速度都上調了
另外,由於攝影機的鏡像關係,頭部左轉和右轉會與左右控制相反,希望調節為反過來的可以在參數里對調一下